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INSTRUCTIONS
PHYSICS DEPARTMENT WRITTEN EXAM

PART I

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to attempt two problems. Each question will be
graded on a scale of zero to ten points. Circle the number of each of the
two problems that you wish to be graded.

CLASSICAL ELECTRO- MATHEMATICAL
SECTION : MECHANICS MAGNETISM AND GENERAL

PROBLEMS : 1 2 3 4 5 6 7 8 9

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks, etc.) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each white
paper sheet;

b. Write only on one side of the paper;
c. Start each problem on the attached examination sheets;
d. If multiple sheets are used for a problem, please make sure you

staple the sheets together and that your ID number is written
on each sheet.

Colored scratch paper is provided and may be discarded when the exam-
ination is over. At the conclusion of the examination period, please staple
sheets from each problem together. On the top sheet, circle the problem
numbers you will be submitting for grading.

Put everything back into the envelope that will be given to you at the
start of the exam, and submit it to the proctor. Do not discard any paper.
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#1 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM:

A uniform disc of mass M and radius R turns in the horizontal plane about
its center, on a frictionless axle. Its initial angular velocity is !. At the cen-
ter of the disc a spherical ball of mass M and radius a is placed with zero
initial center of mass velocity or angular velocity. The ball rolls without
slipping across the disc to the edge.

Find the angular velocity of the disc when the ball reaches its edge. (Hint:
the moment of inertia of the ball about its center is Iball = 2Ma

2
/5, and the

moment of inertia of the disc about its center is Idisc = MR
2
/2.)
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#2 : GRADUATE CLASSICAL MECHANICS

PROBLEM:

The pivot of a simple pendulum of length l and mass m is oscillated in the
y (vertical) direction according to y(t) = a cos⌦t, a ⌧ l. Assuming that
⌦2 � g/l, where g is the acceleration of gravity, find a criterion for ⌦ such
that ✓ = 0 is a stable equilibrium (see the diagram).

! g

y(t)

m
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#3 : GRADUATE CLASSICAL MECHANICS

PROBLEM:

Consider the following Hamiltonian

H(q, p) =
p
2

↵q6
+ ↵q

4
, (1)

with p the momentum, q the generalized coordinate, and ↵ a constant.

Find the equations of motion q = q(t), and p = p(t) using the method of
Hamilton-Jacobi.
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#4 : UNDERGRADUATE CLASSICAL ELECTRODYNAMICS

PROBLEM:

Consider a charged sphere of total radius b. The charge density is given
by ⇢ up to radius a = b/21/3, and by �⇢ for a < r < b. Both ⇢ and �⇢ are
uniform charge densities.

Calculate the electric field ~E(~r) in the three regions r < a = b/21/3, a <

r < b, and r > b, and find the total electrostatic energy of the charge
configuration. Is the energy positive, negative, or zero? Why?
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#5 : GRADUATE CLASSICAL ELECTRODYNAMICS

PROBLEM:

A non-magnetic sphere of dielectric permittivity " and radius a moves at
constant velocity v = vẑ in a uniform magnetic field B0 = �B0ŷ. Find the
electric field everywhere to the leading order in v/c ⌧ 1.

Hint: the relativistic transformation formulas of the parallel and perpen-
dicular field components are (SI units)

B
0
k = Bk , cB0

? = � (cB? � � ⇥ E) ,

E
0
k = Ek , E0

? = � (E? + � ⇥B) .

where � = v/c and � = 1/
p

1� �2.
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#6 : GRADUATE CLASSICAL ELECTRODYNAMICS

PROBLEM:

Find the magnetic field distribution created by a charged solid sphere ro-
tating with a constant angular velocity !. The sphere has radius a and a
uniform charge density ⇢0.

Hint: Assume that the vector potential is a linear combination of terms

A(r, ✓,�) = r
l sin ✓ �̂ ,

where r, ✓, � are spherical coordinates and l = �2, 1, or 3. The vector
Laplacian and the magnetic field corresponding to this A are

r2A = (l + 2)(l � 1)rl�2 sin ✓ �̂ ,

B = r⇥A = 2rl�1 cos ✓ r̂ � (l + 1)rl�1 sin ✓ ✓̂ .
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#7 : UNDERGRADUATE MATHEMATICS AND GENERAL PHYSICS

PROBLEM:

A solid sphere with a hydrophobic surface and a density twice that of
water is placed on top of a large pool of still water, and is found to float
due to surface tension of the water such that the water level comes up
to the sphere’s “equator." Assuming that the bowl formed by the water
follows the shape of the sphere closely, estimate what is the radius of the
sphere that results in equilibrium support. The surface tension for water
is � = 0.07 N/m.
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#8 : GRADUATE MATHEMATICS AND GENERAL PHYSICS

PROBLEM:

Consider the following ODE

x
d
2
y(x)

dx2
+

dy(x)

dx
= y(x) .

By using methods of asymptotic expansion and dominant balance, find
the dominant asymptotic behavior as x ! 1.
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#9 : GRADUATE MATHEMATICS AND GENERAL PHYSICS

PROBLEM:

Consider the integral (a positive)

I =

Z 1

0

dx

(x2 + a2)2
.

Calculate its value by a proper contour in the complex plane.
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#1 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM:

A uniform disc of mass M and radius R turns in the horizontal plane about
its center, on a frictionless axle. Its initial angular velocity is !. At the cen-
ter of the disc a spherical ball of mass M and radius a is placed with zero
initial center of mass velocity or angular velocity. The ball rolls without
slipping across the disc to the edge.

Find the angular velocity of the disc when the ball reaches its edge. (Hint:
the moment of inertia of the ball about its center is Iball = 2Ma

2
/5, and the

moment of inertia of the disc about its center is Idisc = MR
2
/2.)

SOLUTION: The Lagrangian of the system consists entirely of kinetic energy
and is given by

L =
1

2
Idisc�̇

2 +
1

2
Iball⌦

2 +
1

2
Mv

2
ball

where � is the angle the disc makes with the x axis of a frame fixed in the
lab, Idisc = MR

2
/2 is the moment of inertia of the disc, vball is the center of

mass velocity of the ball as seen in the lab frame, ⌦ is the angular rotation
frequency of the ball about its own center of mass, and Iball = 2Ma

2
/5 is

the moment of inertia of the ball.

In a frame rotating with the disc, let the location of the ball be rrot =
r(cos ✓x̂rot + sin ✓ŷrot) where the unit vectors here are fixed to the disc. As
seen in the lab frame, the location is r = r(cos(✓ + �)x̂+ sin(✓ + �)ŷ).

Then rolling without slipping implies that a2⌦2 = |ṙrot|2 = ṙ
2 + r

2
✓̇
2. On

the other hand, the center of mass energy of the ball as seen in the lab
frame is 1

2Mv
2
ball =

1
2M |ṙ|2 = 1

2M [ṙ2 + r
2(✓̇ + �̇)2]. Putting this together we

obtain

L =
1

4
MR

2
�̇
2 ++

1

5
M(ṙ2 + r

2
✓̇
2) +

1

2
M(ṙ2 + r

2(✓̇ + �̇)2).

There are three constants of the motion for this system, and three degrees
of freedom, so the system is integrable. One of the constants is kinetic
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energy, which we will not need to solve this problem. Another is

p✓ = @L/@✓̇ = Mr
2(✓̇ + �̇) +

2

5
Mr

2
✓̇ = constant = 0,

since r = 0 initially. This implies that

✓̇ = �5

7
�̇.

Lastly,

p� = @L/@�̇ =
1

2
MR

2
�̇+Mr

2(✓̇ + �̇) = constant =
1

2
MR

2
!,

This implies that

�̇ =
R

2

R2 + 4r2/7
!.

Therefore when r = R the angular speed of the disc is �̇ = 7!/13.
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#2 : GRADUATE CLASSICAL MECHANICS

PROBLEM:

The pivot of a simple pendulum of length l and mass m is oscillated in the
y (vertical) direction according to y(t) = a cos⌦t, a ⌧ l. Assuming that
⌦2 � g/l, where g is the acceleration of gravity, find a criterion for ⌦ such
that ✓ = 0 is a stable equilibrium (see the diagram).

! g

y(t)

m

SOLUTION:

The position of the pendulum bob is r = l sin ✓x̂+(l cos ✓+ y(t))ŷ. This im-
plies that the potential energy of the pendulum is V = mgl cos ✓ +mgy(t).
The kinetic energy is

T =
1

2
m|ṙ|2 = 1

2
m[l2✓̇2 � 2lẏ(t)✓̇ sin ✓ + ẏ(t)2]

so the Lagrangian is

L =
1

2
m[l2✓̇2 � 2lẏ(t)✓̇✓] +mgl✓

2
/2

where we have dropped constant terms and terms that depend only on
time, since they do not affect the dynamics, and have expanded in small
✓ anticipating that we will only need to consider this regime to determine
stability at ✓ = 0.

The Euler-Lagrange equation then yields

✓̈ =
g + ÿ(t)

l
✓ =

g � ⌦2
a cos⌦t

l
✓
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(This result can also be obtained directly by considering the apparent ac-
celeration of gravity in the noninertial frame of the moving pivot.)

Solve this problem with two-timescale analysis to obtain the ponderomo-
tive potential. Take ✓ = ✓̄+ ✓1 where ✓1 is rapidly varying and small, and ✓̄

is relatively-slowly varying. Using these in the Euler-Lagrange equation,
the fast variation equation is

✓̈1 =
g

l
✓1 �

⌦2
a

l
✓̄ cos⌦t

Treating ✓̄ as a constant the driven solution is

✓1 =
⌦2

a

⌦2l + g
✓̄ cos⌦t ⇡ a

l
✓̄ cos⌦t

where we applied ⌦2 � g/l.

The slow time equation is given by the fast-time average of the Euler-
Lagrange equation,

¨̄
✓ =

g

l
✓̄ � ⌦2

a

l
cos⌦t ✓1 =

g

l
✓̄ � ⌦2

a
2

2l2
✓̄

Thus, slow motion is stable near ✓̄ = 0 provided that g/l � ⌦2
a
2
/(2l2) < 0,

or ⌦2
> 2gl/a2.
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#3 : GRADUATE CLASSICAL MECHANICS

PROBLEM:

Consider the following Hamiltonian

H(q, p) =
p
2

↵q6
+ ↵q

4
, (1)

with p the momentum, q the generalized coordinate, and ↵ a constant.

Find the equations of motion q = q(t), and p = p(t) using the method of
Hamilton-Jacobi.

SOLUTION:

Since the Hamiltonian does not depend explicitly on time, Hamilton’s
principle function is S = W (q, E) � Et, with E a constant. Therefore,
the Hamilton-Jacobi equation is

H

✓
q,

@W

@q

◆
= E. (2)

This then becomes:

1

↵q6

✓
@W

@q

◆2

+ ↵q
4 = E. (3)

From this we get:

@W

@q
=

p
↵q6(E � ↵q4), (4)

or
W =

Z p
↵q6(E � ↵q4)dq. (5)

Hamilton’s principle function then assumes the form:

S =

Z p
↵q6(E � ↵q4)dq � Et. (6)
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Set � = @S/@E, then

� =

Z
↵q

6

2
p
↵q6(E � ↵q4)

dq � t, (7)

namely

� + t =
p
↵

Z
q
3

2
p
E � ↵q4

dq. (8)

We can solve this integral by making the substitution x = E�↵q
4 to obtain:

� + t = � 1

4
p
↵

p
E � ↵q4. (9)

Inverting this equation we finally get:

q(t) =


1

↵
[E � 16↵(t+ �)2]

�1/4
. (10)

Since p = @W/@q, the equation p = p(t) can be obtained by replacing (??)
into (??).
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#4 : UNDERGRADUATE CLASSICAL ELECTRODYNAMICS

PROBLEM:

Consider a charged sphere of total radius b. The charge density is given
by ⇢ up to radius a = b/21/3, and by �⇢ for a < r < b. Both ⇢ and �⇢ are
uniform charge densities.

Calculate the electric field ~E(~r) in the three regions r < a = b/21/3, a <

r < b, and r > b, and find the total electrostatic energy of the charge
configuration. Is the energy positive, negative, or zero? Why?

SOLUTION:

Gauss’ Law:

I
~E · d~a = 4⇡Qenclosed

By symmetry ~E = | ~E|r̂.

r < a

| ~E|
�
4⇡r2

�
=

1

✏0
⇢

✓
4⇡r3

3

◆
) ~E(r) =

4⇡

3
⇢rr̂

a < r < b

| ~E|
�
4⇡r2

�
= 4⇡⇢

✓
4⇡a3

3

◆
�

✓
4⇡r3

3
� 4⇡a3

3

◆�
) ~E(r) =

4⇡

3
⇢

✓
b
3

r2
� r

◆
r̂

r > b

| ~E|
�
4⇡r2

�
= 4⇡⇢

✓
4⇡a3

3

◆
�

✓
4⇡b3

3
� 4⇡a3

3

◆�
) ~E(r) =

4⇡

3
⇢

✓
2a3 � b

3

r2

◆
r̂ = 0

The electrostatic energy is given by ✏ =
R
d
3
r| ~E(r)|2/8⇡. By definition this

energy must be positive-definite if E is nonzero. Performing the integral
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over the two regions for which ~E is nonzero gives

✏ =
1

8⇡

Z a

0

4⇡r2dr(
4⇡⇢

3
r)2 +

1

8⇡

Z b

a

4⇡r2dr(
4⇡⇢

3
(
b
3

r2
� r))2

=
1

2
(
4⇡⇢

3
)2
�a5

5
+

Z b

a

dr(
b
6

r2
� 2b3r + r

4)
�

=
1

2
(
4⇡⇢

3
)2
�b6

a
� b

5 � b
3(b2 � a

2) +
b
5

5
)

=
1

2
(
4⇡⇢

3
)2
�b6

a
� 9

5
b
5 + b

3
a
2
�

=
1

2
(
4⇡⇢

3
)2b5

�
21/3 + 2�2/3 � 9

5
).

The coefficient 21/3 + 2�2/3 � 9/5 = 0.0899 is positive, so the electrostatic
energy is positive, as expected.
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#5 : GRADUATE CLASSICAL ELECTRODYNAMICS

PROBLEM:

A non-magnetic sphere of dielectric permittivity " and radius a moves at
constant velocity v = vẑ in a uniform magnetic field B0 = �B0ŷ. Find the
electric field everywhere to the leading order in v/c ⌧ 1.

Hint: the relativistic transformation formulas of the parallel and perpen-
dicular field components are (SI units)

B
0
k = Bk , cB0

? = � (cB? � � ⇥ E) ,

E
0
k = Ek , E0

? = � (E? + � ⇥B) .

where � = v/c and � = 1/
p

1� �2.

SOLUTION: Go to the frame co-moving with the sphere. Since v ⌧ c, the
field transformation formulas simplify to

B0
0 = B0 , E0

0 = E0 + v ⇥B0 = v ⇥B0 = vB0x̂ .

The magnetic field has no effect on the dielectric sphere. The uniform elec-
tric field E0

0 polarizes the (stationary) sphere, which creates the additional
electric field

�E0 =
"� "0

"+ 2"0
vB0

( �x̂ , r < a ,

3(r̂ · x̂)x̂� x̂

r3
a
3
, r > a .

The derivation of this expression can be found in literally any E&M text-
book, so it is omitted. Finally, transformation back to the lab frame gives,
to the same order in v/c

E = E0 � v ⇥B0 = (v ⇥B0 +�E0)� v ⇥B0 = �E0
,

so the answer is simply the preceding formula.
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#6 : GRADUATE CLASSICAL ELECTRODYNAMICS

PROBLEM:

Find the magnetic field distribution created by a charged solid sphere ro-
tating with a constant angular velocity !. The sphere has radius a and a
uniform charge density ⇢0.

Hint: Assume that the vector potential is a linear combination of terms

A(r, ✓,�) = r
l sin ✓ �̂ ,

where r, ✓, � are spherical coordinates and l = �2, 1, or 3. The vector
Laplacian and the magnetic field corresponding to this A are

r2A = (l + 2)(l � 1)rl�2 sin ✓ �̂ ,

B = r⇥A = 2rl�1 cos ✓ r̂ � (l + 1)rl�1 sin ✓ ✓̂ .

SOLUTION: Choose the z-axis along the rotation axis of the sphere. The
rotation creates the electric current density

j(r) = !ẑ⇥ ⇢0r = ⇢0!r sin ✓ �̂ , r < a .

The Maxwell equation to solve is

r⇥B = r⇥ (r⇥A) = µ0j

with the boundary conditions (BC) B(r) ! 0 as r ! 1 and |B(r)| < 1
as r ! 0. The suggested choice of the vector potential obeys the Coulomb
gauge condition r ·A = 0, which allows us to bring the above equation to

�r2A = µ0j .

Let B0 = µ0⇢0!a
2, then

r2A = �B0

a2
r sin ✓ �̂ , r < a ,

r2A = 0 , r > a .
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The second equation, for points outside the sphere, is satisfied for an arbi-
trary combination of l = �2 or l = 1 terms. However, only l = �2 term,
which describes a magnetic dipole, obeys the BC at infinity. The second
equation, for points inside the sphere, can be satisfied taking l = 3. We
can also add a term with l = 1 (but not l = �2). Adjusting the coefficients
of these three possible terms to make A and its derivatives continuous at
r = a, we find

A� =

✓
1

6

r

a
� 1

10

r
3

a3

◆
B0a sin ✓ , r < a ,

A� =
1

15

a
2

r2
B0a sin ✓ , r > a .

Hence, the magnetic field is

B

B0
=

✓
1

3
� 1

5

r
2

a2

◆
cos ✓ r̂ �

✓
1

3
� 2

5

r
2

a2

◆
sin ✓ ✓̂ , r < a ,

B

B0
=

1

15

a
3

r3
(2 cos ✓ r̂ + sin ✓ ✓̂) , r > a .

This field is plotted in the Figure below.
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#7 : UNDERGRADUATE MATHEMATICS AND GENERAL PHYSICS

PROBLEM:

A solid sphere with a hydrophobic surface and a density twice that of
water is placed on top of a large pool of still water, and is found to float
due to surface tension of the water such that the water level comes up
to the sphere’s “equator." Assuming that the bowl formed by the water
follows the shape of the sphere closely, estimate what is the radius of the
sphere that results in equilibrium support. The surface tension for water
is � = 0.07 N/m.

SOLUTION:

This is a balance between net potential energy and the energy in surface
tension. The latter is (dimensionally, for instance) Esurf = �Awet, where
Awet is the “wetted" surface area.

For net potential energy change, the sphere displaces water (overall water
level rises as the sphere enters the water). The average distance the water
is displaced is 3

8R, which can be calculated as the average of r cos ✓ through
a hemisphere, where ✓ is the usual polar angle. A sphere of density ⇢s

therefore loses potential energy 4
3⇡R

3
⇢sgR when sinking by a height equal

to its radius. Meanwhile, the water in the displaced hemisphere gains
potential energy 2

3⇡R
3
⇢wg · 3

8R for a net loss of
�
4
3⇢s �

1
4⇢w

�
⇡gR

4. When
⇢s = 2⇢w, we end up with a net potential energy change of 29

12⇢w⇡gR
4.

The surface tension acts over the area of the hemisphere in “contact" with
the water, by an amount corresponding to the increase in surface area:
from ⇡R

2 to 2⇡R2, so that Esurf = �⇡R
2. Equating the potential energy

change to the surface tension contribution, we find that

R =

r
12

29

�

⇢wg
.

This evaluates to a little less than 2 mm in radius.
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#8 : GRADUATE MATHEMATICS AND GENERAL PHYSICS

PROBLEM:

Consider the following ODE

x
d
2
y(x)

dx2
+

dy(x)

dx
= y(x) .

By using methods of asymptotic expansion and dominant balance, find
the dominant asymptotic behavior as x ! 1.

SOLUTION: By using the ansatz y ⇠ e
S(x), we obtain the equation

xS
00
+ xS

02 + S
0 = 1 . (1)

Dominant balance for large x shows then that xS 02 ' 1, i.e. S ' ±2
p
x +

S1(x). Inserting this expression into Eq. (??) and using again dominant
balance, we obtain S1 = �1

4 ln x and one can check that the next order is
subdominant. We conclude that the dominant behavior is y(x) / e±2

p
x

x1/4 .
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#9 : GRADUATE MATHEMATICS AND GENERAL PHYSICS

PROBLEM:

Consider the integral (a positive)

I =

Z 1

0

dx

(x2 + a2)2
.

Calculate its value by a proper contour in the complex plane.

SOLUTION:

The integral I = 1
2

R1
�1

dx
(x2+a2)2

. The integral
R1
�1

dx
(x2+a2)2

can be calculated
by closing the contour in the upper plane by a big circle of radius R ! 1
(which gives a vanishing contribution) and noting that the integrand has a
pole at ia. Its residue is easy to calculate Res = 1

4ia3 , which yields I = ⇡
4a3 .
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INSTRUCTIONS
PHYSICS DEPARTMENT WRITTEN EXAM

PART II

Please take a few minutes to read through all problems before starting the exam.
Ask the proctor if you are uncertain about the meaning of any part of any problem.
You are to attempt two problems from each section.

The questions are grouped in two sections: quantum mechanics and statistical
physics. You must attempt two problems from each of these sections, for a total
of four problems. Credit will be assigned for four (4) questions only. Each ques-
tion will be graded on a scale of zero to ten points. Circle the number of each of
the four problems you wish to be graded.

QUANTUM STATISTICAL
SECTION : MECHANICS PHYSICS

PROBLEMS : 10 11 12 13 14 15

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens, pencils,
erasers, calculator and food items. Please deposit your belongings (books,
notes, backpacks, etc.) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each white paper
sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you staple
the sheets together and that your ID number is written on each sheet.

Colored scratch paper is provided and may be discarded when the examination
is over. At the conclusion of the examination period, please staple sheets from
each problem together. On the top sheet, circle the problem numbers you will be
submitting for grading.

Put everything back into the envelope that will be given to you at the start of
the exam, and submit it to the proctor. Do not discard any paper.
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#10 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM:

Suppose that a system has H = 1
2I
~L
2 + ↵Lz, where I and ↵ are constants.

(a)(2pt) Find [H,Lx], [H,Ly], and [H,Lz]. Which Li are t independent in the Heisen-
berg picture?

(b)(3 pt)At time t = 0, the system is in a superposition of |`,mi states:

| (t = 0)i = 1p
5
(|2, 0i+ 2i|2,�1i)

Evaluate the wave-function | (t)i at time t > 0 by solving the time-dependent
Schrodinger equation.

(c)(3 pt) What energies can be measured, and with what probabilities, for the above
state for general t? Also, what is hHi for general t?

(d)(2 pt) Find hLxi and hLzi for general t.
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#11 : GRADUATE QUANTUM MECHANICS

PROBLEM: Let L± = Lx ± iLy and Lz be orbital angular momentum operators. Con-
sider an operator V+ which satisfies

[L+, V+] = 0, [Lz, V+] = ~V+.

(a)(3pt) Let |`,mi be a simultaneous eigenfunction of L2 and Lz with eigenvalues
`(`+ 1)~2 and m~, respectively. Show that

V+|`, `i = const |`+ 1, `+ 1i.

(b)(3pt) Demonstrate, for the case of orbital angular momenta, that

V+ = e
i� sin ✓

satisfies the commutation relations of V+ with L+ and Lz given above. Recall that
the operators L+ and Lz are given by the differential operators

L+ = ~ei�
✓
@

@✓
+ i cot ✓

@

@�

◆
,

Lz = �i~ @

@�
.

(c)(4pt) Assume that |0, 0i = const ⌘ 1/
p
4⇡. Using the equations in parts (a) and

(b), determine the functions |`, `i for arbitrary `, normalized such that

h`, `|`, `i = 1.

A useful integral is Z ⇡/2

0

d✓ sin2`+1
✓ =

2` `!

(2`+ 1)!!

where (2`+ 1)!! ⌘ (2`+ 1)(2`� 1) · · · 5 · 3 · 1.
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#12 : GRADUATE QUANTUM MECHANICS

PROBLEM:

Consider N identical, non-interacting spinless fermions in a potential V (x) where
V (x) = 0 for 0  x  L, and V (x) = 1 otherwise. Recall that the single-particle
eigenstates for this potential are given by �n(x) = hx|ni =

q
2
L sin(n⇡xL ) where n

runs from 1 to 1.

2pts (i) Denoting the second-quantized operator that creates a fermion in the single-
particle level |ni as a†(n), write down the ground state | 0i of this system in terms
of the operators a†(n) acting on the vacuum |0i (= the state with no particles). It is
OK to leave the wavefunction unnormalized.

3pts (ii) Calculate the density of fermions ⇢(x) at location x in the real-space for
the ground state | 0i. You may express your answer in terms of the function
F (N, y1, y2) =

PN
n=1 sin(ny1) sin(ny2) which you are not required to evaluate ex-

plicitly in terms of N, y1, y2.

5pts (iii) Next, calculate the correlation function h 0|a†(x1)a†(x2)a(x2)a(x1)| 0i where
a
†(x) is the operator that creates a fermion at location x in the real-space. Assume

0  x1, x2  L. Again, just express the answer in terms of the function F defined
in part (ii) above.
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#13 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM:

Consider a system of N identical bosons with spin zero in two dimensional space
of area A at temperature T . The total number of bosons is conserved, and the
energy of single-particle levels is given by ✏(~p) = c|~p| where ~p is the corresponding

momentum. Assuming
hc

T � ⇢
�1/2 where ⇢ is the particle density (= number of

particles per unit area), calculate the number of particles in the ground state as a
function of T , A, and N .

You may use the integral
R1
0

x dx

ex�1 = ⇡
2
/6.



CODE NUMBER: SCORE: 6

#14 : GRADUATE STATISTICAL MECHANICS

PROBLEM:

Consider the modified Blume-Capel Hamiltonian,

Ĥ = �1
2J

X

hiji

Si Sj +�
X

i

S
2
i ,

on a regular lattice of coordination number z. The first sum is over all links of
the lattice, and the second sum is over all sites. At each site, the spin variable Si

may be in one of four states: Si 2 {�1, 0, 0,+1}. Note that the state with Si = 0 is

doubly degenerate; this is important.. The coupling J is positive, but � may be of
either sign.

(a)(3pt) Making the mean field approximation in the first term of Ĥ only, find the
mean field Hamiltonian ĤMF.

(b)(4pt) Adimensionalize by writing ✓ ⌘ kBT/zJ and ! ⌘ �/zJ , and find the
dimensionless free energy per site f ⌘ F/NzJ as a function of ✓, !, and the local
magnetization m = hSii (same for all sites).

(c) (3pt) Find the self-consistent mean field equation for m.
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#15 : GRADUATE STATISTICAL MECHANICS

PROBLEM:

Consider two systems in thermal contact, so that energy (and only energy) can be
exchanged between them. Let the density of states of system 1 be D1(E1) and that
of system 2 be D2(E2). The interfacial energy between the two systems is negligible
in comparison with the bulk energies.

(a)(2pt) Suppose the total energy is fixed at E = E1 + E2. Find an expression for
the total density of states D(E).

(b)(2pt) Find the probability density P1(E1) for system 1 to have energy E1, given
that the total energy is E.

(c)(2pt) Show that under the condition that P1(E1) is maximized the temperatures
satisfy T1 = T2.

(d)(4pt) Expanding E1 = E
⇤
1 + �E1 about the maximum, show, in the thermody-

namic limit, that

P1(E
⇤
1 +�E1) = P1(E

⇤
1) exp

✓
� (�E1)

2

2kBT
2CV

◆
,

where T is the common temperature. Find CV in terms of the heat capacities CV,1

and CV,2 of the individual systems.
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INSTRUCTIONS
PHYSICS DEPARTMENT WRITTEN EXAM

PART II

Please take a few minutes to read through all problems before starting the exam.
Ask the proctor if you are uncertain about the meaning of any part of any problem.
You are to attempt two problems from each section.

The questions are grouped in two sections: quantum mechanics and statistical
physics. You must attempt two problems from each of these sections, for a total
of four problems. Credit will be assigned for four (4) questions only. Each ques-
tion will be graded on a scale of zero to ten points. Circle the number of each of
the four problems you wish to be graded.

QUANTUM STATISTICAL
SECTION : MECHANICS PHYSICS
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SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens, pencils,
erasers, calculator and food items. Please deposit your belongings (books,
notes, backpacks, etc.) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each white paper
sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you staple
the sheets together and that your ID number is written on each sheet.

Colored scratch paper is provided and may be discarded when the examination
is over. At the conclusion of the examination period, please staple sheets from
each problem together. On the top sheet, circle the problem numbers you will be
submitting for grading.

Put everything back into the envelope that will be given to you at the start of
the exam, and submit it to the proctor. Do not discard any paper.
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#10 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM:

Suppose that a system has H = 1
2I
~L
2 + ↵Lz, where I and ↵ are constants.

(a)(2pt) Find [H,Lx], [H,Ly], and [H,Lz]. Which Li are t independent in the Heisen-
berg picture?

(b)(3 pt)At time t = 0, the system is in a superposition of |`,mi states:

| (t = 0)i = 1p
5
(|2, 0i+ 2i|2,�1i)

Evaluate the wave-function | (t)i at time t > 0 by solving the time-dependent
Schrodinger equation.

(c)(3 pt) What energies can be measured, and with what probabilities, for the above
state for general t? Also, what is hHi for general t?

(d)(2 pt) Find hLxi and hLzi for general t.

SOLUTION:

(a) [H,Lx] = ↵[Lz, Lx] = i~↵Ly, [H,Ly] = �i↵~Lx, [H,Lz] = 0. So only Lz is
t-independent in the Heisenberg picture.

(b) | (t)i = e
�iHt/~| (t = 0)i:

| (t)i = 1p
5
e
�3i~t/I �|2, 0i+ 2iei↵t|2,�1i

�
.

(c) E2,0 = 3~2/I with probability 1/5 and E2,�1 = 3~2/2I �↵~ with probability 4/5.
So hHi = 3~2/I � (4/5)↵. These are all time independent.

(d) hLxi = 1
2h(L+ + L�)i = �2

p
6

5 sin↵t, hLzi = �4
5~.
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#11 : GRADUATE QUANTUM MECHANICS

PROBLEM: Let L± = Lx ± iLy and Lz be orbital angular momentum operators. Con-
sider an operator V+ which satisfies

[L+, V+] = 0, [Lz, V+] = ~V+.

(a)(3pt) Let |`,mi be a simultaneous eigenfunction of L2 and Lz with eigenvalues
`(`+ 1)~2 and m~, respectively. Show that

V+|`, `i = const |`+ 1, `+ 1i.

(b)(3pt) Demonstrate, for the case of orbital angular momenta, that

V+ = e
i� sin ✓

satisfies the commutation relations of V+ with L+ and Lz given above. Recall that
the operators L+ and Lz are given by the differential operators

L+ = ~ei�
✓
@

@✓
+ i cot ✓

@

@�

◆
,

Lz = �i~ @

@�
.

(c)(4pt) Assume that |0, 0i = const ⌘ 1/
p
4⇡. Using the equations in parts (a) and

(b), determine the functions |`, `i for arbitrary `, normalized such that

h`, `|`, `i = 1.

A useful integral is Z
⇡/2

0

d✓ sin2`+1
✓ =

2` `!

(2`+ 1)!!

where (2`+ 1)!! ⌘ (2`+ 1)(2`� 1) · · · 5 · 3 · 1.

SOLUTION:

(a)
L
2 |`,mi = ` (`+ 1) ~2 |`,mi
Lz |`,mi = m~ |`,mi

[L+, V+] = 0 ) L+V+|`, `i = V+L+|`, `i = 0
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where L+|`, `i = 0 since m = ` eigenstate is the eigenstate with the highest Lz

eigenvalue, for L2 eigenvalue equal to ` (`+ 1) ~2.

[Lz, V+] = ~V+ ) Lz (V+|`, `i) = (V+Lz + V+~) |`, `i = (`+ 1) ~ (V+|`, `i)

Thus, (V+|`, `i) is an eigenstate (up to normalization) of Lz with eigenvalue m~ =
(`+ 1) ~.

Since
L+ (V+|`, `i) = 0

one concludes that it cannot be raised to an eigenstate of Lz with eigenvalue m~ =
(`+ 2) ~. Thus,

(V+|`, `i) = const |`+ 1, `+ 1i.

(b)
V+ = e

i� sin ✓

[L+, V+] =


~ei�

✓
@

@✓
+ i cot ✓

@

@�

◆
, e

i� sin ✓

�

= ~ei�
�
cos ✓ei� + i cot ✓(iei� sin ✓)

�
= 0

[Lz, V+] =


�i~ @

@�
, e

i� sin ✓

�
= ~ e

i� sin ✓ = V+~

(c)

|0, 0i = 1p
4⇡

h0, 0|0, 0i = 1

4⇡

Z
d⌦ = 1

For ` = 1,
|1, 1i = c1 V+|0, 0i =

1p
4⇡

c1e
i� sin ✓,

h1, 1|1, 1i = |c1|2 h0, 0|V †
+V+|0, 0i =

1

4⇡
|c1|2

Z 2⇡

0

d�

Z +1

�1

d(cos ✓) sin2
✓ =

2

3
|c1|2 = 1

) c1 =

r
3

2
, |1, 1i =

r
3

8⇡
e
i� sin ✓

For general `,

|`, `i = c` (V+)
`|0, 0i = 1p

4⇡
c` e

i`� sin`
✓



CODE NUMBER: SCORE: 5

h`, `|`, `i = |c`|2
1

4⇡

Z 2⇡

0

d�

Z +1

�1

d(cos ✓) sin2`
✓ =

1

2
|c`|2

Z
⇡

0

d✓ sin2`+1
✓

= |c`|2
Z

⇡/2

0

d✓ sin2`+1
✓ = |c`|2

2` `!

(2`+ 1)!!
= 1

) c` =

r
(2`+ 1)!!

2` `!
, (2`+ 1)!! ⌘ (2`+ 1)(2`� 1) · · · 5 · 3 · 1

|`, `i =
r

(2`+ 1)!!

2` `!

1p
4⇡

e
i`� sin`

✓
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#12 : GRADUATE QUANTUM MECHANICS

PROBLEM:

Consider N identical, non-interacting spinless fermions in a potential V (x) where
V (x) = 0 for 0  x  L, and V (x) = 1 otherwise. Recall that the single-particle
eigenstates for this potential are given by �n(x) = hx|ni =

q
2
L
sin(n⇡x

L
) where n

runs from 1 to 1.

2pts (i) Denoting the second-quantized operator that creates a fermion in the single-
particle level |ni as a†(n), write down the ground state | 0i of this system in terms
of the operators a†(n) acting on the vacuum |0i (= the state with no particles). It is
OK to leave the wavefunction unnormalized.

3pts (ii) Calculate the density of fermions ⇢(x) at location x in the real-space for
the ground state | 0i. You may express your answer in terms of the function
F (N, y1, y2) =

P
N

n=1 sin(ny1) sin(ny2) which you are not required to evaluate ex-
plicitly in terms of N, y1, y2.

5pts (iii) Next, calculate the correlation function h 0|a†(x1)a†(x2)a(x2)a(x1)| 0i where
a
†(x) is the operator that creates a fermion at location x in the real-space. Assume

0  x1, x2  L. Again, just express the answer in terms of the function F defined
in part (ii) above.

SOLUTION:

(i) | 0i =
Q

N

i=1 a
†(i)|0i (up to normalization).

(ii) ⇢(x) = h 0|a†(x)a(x)| 0i =
P

m,n
h 0|a†(n)a(m)| 0i hn|xi hx|mi. Only m = n

term contributes since | 0i is an eigenstate. Further, h 0|a†(n)a(n)| 0i = 1 for 1 
n  N , and h 0|a†(n)a(n)| 0i = 0 otherwise.

) ⇢(x) =
NX

n=1

|hn|xi|2 (1)

= 2
L

NX

n=1

sin2(n⇡x/L) (2)

= 2
L
F (N, ⇡x/L, ⇡x/L) (3)
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(iii)

h 0|a†(x1)a
†(x2)a(x2)a(x1)| 0i (4)

= h 0|a†(x1)a(x1)| 0i h 0|a†(x2)a(x2)| 0i � h 0|a†(x1)a(x2)| 0i h 0|a†(x2)a(x1)| 0i(5)

= ⇢(x1)⇢(x2)�
���
X

m,n

h 0|a†(n)a(m)| 0i hn|x1i hx2|mi
���
2

(6)

Again, only m = n contributes in the above sum.

) h 0|a†(x1)a
†(x2)a(x2)a(x1)| 0i (7)

= ⇢(x1)⇢(x2)�
�
2
L
F (N, ⇡x1/L, ⇡x2/L)

�2 (8)
= 4

L2

⇥
F (N, ⇡x1/L, ⇡x1/L)F (N, ⇡x2/L, ⇡x2/L)� F

2(N, ⇡x1/L, ⇡x2/L)
⇤

(9)

Note that this correlation function vanishes when x1 = x2 as it should since (a†(x))2 =
0.
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#13 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM:

Consider a system of N identical bosons with spin zero in two dimensional space
of area A at temperature T . The total number of bosons is conserved, and the
energy of single-particle levels is given by ✏(~p) = c|~p| where ~p is the corresponding

momentum. Assuming
hc

T
� ⇢

�1/2 where ⇢ is the particle density (= number of
particles per unit area), calculate the number of particles in the ground state as a
function of T , A, and N .

You may use the integral
R1
0

x dx

ex�1 = ⇡
2
/6.

SOLUTION: When
hc

T
� ⇢

�1/2, the particles will bose-condense, and therefore, the
chemical potential µ = 0. Denoting the number of particles in the ground state as
N0, and the total number of particles in the excited states as Nex, clearly N0+Nex =
N . Nex can be calculated by summing the occupation number of particles in the
excited states:

Nex = A

(2⇡)2

Z 1

0

2⇡k dk

e�~ck�1 (10)

= AT
2

2⇡(~c)2

Z 1

0

x dx

ex�1 (11)

= ⇡AT
2

12(~c)2 (12)

) N0 = N � ⇡AT
2

12(~c)2 (13)
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#14 : GRADUATE STATISTICAL MECHANICS

PROBLEM:

Consider the modified Blume-Capel Hamiltonian,

Ĥ = �1
2J

X

hiji

Si Sj +�
X

i

S
2
i
,

on a regular lattice of coordination number z. The first sum is over all links of
the lattice, and the second sum is over all sites. At each site, the spin variable S

i

may be in one of four states: S
i
2 {�1, 0, 0,+1}. Note that the state with S

i
= 0 is

doubly degenerate; this is important.. The coupling J is positive, but � may be of
either sign.

(a)(3pt) Making the mean field approximation in the first term of Ĥ only, find the
mean field Hamiltonian ĤMF.

(b)(4pt) Adimensionalize by writing ✓ ⌘ kBT/zJ and ! ⌘ �/zJ , and find the
dimensionless free energy per site f ⌘ F/NzJ as a function of ✓, !, and the local
magnetization m = hS

i
i (same for all sites).

(c) (3pt) Find the self-consistent mean field equation for m.

SOLUTION:

(a) Writting S
i
= m + �S

i
and neglecting terms quadratic in the fluctuations �S

i
in

the first term in Ĥ , we obtain

ĤMF = 1
2NzJm

2 � zJm

X

i

S
i
+�

X

i

S
2
i

.

(b) The partition function is

ZMF = Tre�ĤMF/kBT = e
�Nm

2
/2✓

⇣X

S

e
mS/✓

e
�!S

2
/✓

⌘N

= e
�Nm

2
/2✓

⇣
2 + 2e�!/✓ cosh(m/✓)

⌘N
= e

�Nf/✓
.

Thus,
f(m, ✓,!) = 1

2m
2 � ✓ ln

⇣
2 + 2e�!/✓ cosh(m/✓)

⌘
.

(c) Setting @f/@m = 0, we obtain the mean field equation

m =
sinh(m/✓)

e!/✓ + cosh(m/✓)
.
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#15 : GRADUATE STATISTICAL MECHANICS

PROBLEM:

Consider two systems in thermal contact, so that energy (and only energy) can be
exchanged between them. Let the density of states of system 1 be D1(E1) and that
of system 2 be D2(E2). The interfacial energy between the two systems is negligible
in comparison with the bulk energies.

(a)(2pt) Suppose the total energy is fixed at E = E1 + E2. Find an expression for
the total density of states D(E).

(b)(2pt) Find the probability density P1(E1) for system 1 to have energy E1, given
that the total energy is E.

(c)(2pt) Show that under the condition that P1(E1) is maximized the temperatures
satisfy T1 = T2.

(d)(4pt) Expanding E1 = E
⇤
1 + �E1 about the maximum, show, in the thermody-

namic limit, that

P1(E
⇤
1 +�E1) = P1(E

⇤
1) exp

✓
� (�E1)

2

2kBT
2C

V

◆
,

where T is the common temperature. Find C
V

in terms of the heat capacities C
V,1

and C
V,2 of the individual systems.

SOLUTION:

(a) The combined density of states is

D(E) =

1Z

�1

dE1 D1(E1)D2(E � E1) .

(b) The probability density for system 1 to have energy E1 is then

P1(E1) =
D1(E1)D2(E � E1)

D(E)
.

Note that
1R

�1
dE1 P1(E1) = 1 is normalized.

(c) We now ask: what is the most probable value of E1? We find out by differenti-
ating P1(E1) with respect to E1 and setting the result to zero. This requires

0 =
@

@E1

lnP1(E1) =
@

@E1

lnD1(E1) +
@

@E1

lnD2(E � E1) .
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Since S
j
(E

j
) = kB lnDj

(E
j
), we conclude that the maximally likely partition of

energy between systems 1 and 2 is realized when

@S1

@E1

=
@S2

@E2

.

This guarantees that
S(E,E1) = S1(E1) + S2(E � E1)

is a maximum with respect to the energy E1, at fixed total energy E. As T =
@S/@E, we have T1 = T2.

(d) We saw that the probability distribution P1(E1) is maximized when T1 = T2,
but how sharp is the peak in the distribution? Let us write E1 = E

⇤
1 +�E1, where

E
⇤
1 is the location of the maximum of P1(E1). We then have

lnP1(E
⇤
1 +�E1) = lnP1(E

⇤
1) +

1

2kB

@
2
S1

@E
2
1

����
E

⇤
1

(�E1)
2 +

1

2kB

@
2
S2

@E
2
2

����
E

⇤
2

(�E1)
2 + . . . ,

where E
⇤
2 = E � E

⇤
1 . We must now evaluate

@
2
S

@E2
=

@

@E

✓
1

T

◆
= � 1

T 2

✓
@T

@E

◆

V,N

= � 1

T 2 C
V

,

where C
V
=

�
@E/@T

�
V,N

is the heat capacity. Thus,

P1(E
⇤
1 +�E1) = P1(E

⇤
1) exp

✓
� (�E1)

2

2kBT
2C

V

◆
,

where
C

V
=

C
V,1 CV,2

C
V,1 + C

V,2

.

The distribution is therefore a Gaussian, and the fluctuations in �E1 can now be
computed:

⌦
(�E1)

2
↵
= kBT

2
C

V
=) (�E1)RMS = kBT

q
C

V
/kB .

The individual heat capacities C
V,1 and C

V,2 scale with the volumes V1 and V2, re-
spectively. If V2 � V1, then C

V,2 � C
V,1, in which case C

V
⇡ C

V,1. Therefore
the RMS fluctuations in �E1 are proportional to the square root of the system size,
whereas E1 itself is extensive. Thus, the ratio (�E1)RMS/E1 / V

�1/2 scales as the
inverse square root of the volume. The distribution P1(E1) is thus extremely sharp.


