
INSTRUCTIONS
PART I : PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. (E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks, ) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.
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#1 : UNDERGRADUATE Mechanics

An astronaut travels to a nearby star system, a distance of 12 light years
away, then immediately turns around and returns; assume an instantaneous
turn around. Both legs of the trip are made at a velocity of 0.6c so that
the trip takes a total travel time of 40 years in the frame of the Earth.
The astronaut’s spaceship sends out a radio ping once per second which is
monitored by the astronaut’s twin sister on earth.
(a) What frequency of pings does she hear initially and for how long.
(b) The frequency shifts after some time. What is the second frequency of
pings and for how long do they last on Earth.
(c) Assuming that there are approximately 3.156 × 107 seconds per year,
how many total pings does she hear?



CODE NUMBER: ————– SCORE: ———— 2

#2 : UNDERGRADUATE Mechanics

PROBLEM: A beam with a mass m can freely rotate in a plane about a pivot
attached to the ceiling, as depicted in the sketch below. Let β denote the
angle between the beam and the vertical. A board with mass m1 lying
on the floor is being pulled to the right at a constant speed with force T .
The coefficients of friction between the beam and the board and between
the board and the floor are µ and µ1, respectively. What is the value of
T ? Under what conditions does the board get jammed, so that pulling the
board becomes impossible?
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#3 : UNDERGRADUATE E & M

PROBLEM: A hollow sphere of radius R is uniformly charged by an electric
charge Q. The sphere is cut in two parts along a plane whose minimum
distance from the sphere’s center is h (see figure). The cutting does not
redistribute the charge. What force is necessary to hold the two parts of the
sphere together?
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#4 : UNDERGRADUATE EM (II)

PROBLEM: Charged particles moving through a region of space filled with a
uniform magnetic field travel on curved rather than stright paths.

(a) Given two otherwise identical particles, which is deflected more, the one
with more momentum (p) or the one with less momentum? Explain your
answer in words.

(b) Given two otherwise identical particles, which is deflected more, the one
with more charge (q) or the one with less charge? Explain your answer in
words.

(c) For a relativistic nucleus of charge q = Ze (Z is the number of protons,
e the charge on the electron), the behavior in a magnetic field depends on
R = pc/q where p is the relativistic momentum. Explain why a wide variety
of nuclei less massive than iron (with A nucleons) have similar R values
when their energy per nucleon are the same.

(d) Consider cosmic rays with p = 1011 GeV/c that come from outside our
Galaxy. The radius of curvature of their motion in the disk of our Galaxy
(where the magnetic fields are strongest) is given by

r [m] =
p [GeV/c]

0.3B [T]
,

Here the square brackets denote the units for the various quantities in the
equation. B = 3× 10−10 T is the interstellar magnetic field in the disk. The
disk has a thickness of h = 1019 m (i.e. they travel at least that distance to
reach the sun that is in the middle of the disk). Do we expect to identify
the sources that emitted these particles? Explain your answer.

(e) Over what range of cosmic ray energy do we obtain useful information
on the direction to the sources?



CODE NUMBER: ————– SCORE: ———— 5

#5 : UNDERGRADUATE StatMech

Find the mean energy density u, particle density n, and entropy density s
for black-body radiation at temperature T .

1. Write the answers in terms of dimensionless integrals.

2. Evaluate the integrals using a series expansion in terms of

ζ(s) =
∞
∑

n=1

1

ns
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#6 : UNDERGRADUATE StatMech

1.5 mol of H2 considered as an ideal diatomic gas with 5 degrees of freedom
per molecule is initially at a temperature of 300 K and has a volume of 15
liters. It undergoes an isothermal expansion to a volume of 30 liters and
then an adiabatic contraction to the initial volume. By what factor does
the number of gas molecules with the x-component of velocity between 200
m/s and 200.1 m/s change?

Various constants are (in SI units): Avogadro’s number is N
A
= 6.03×1023;

Boltzmann’s constant kB = 1.38×10−23; mass of a protonmp = 1.67×10−27;
molar mass of H2 is 0.002 kg; universal gas constant 8.31 J/molK; charge of
electron (in magnitude) e = 1.6× 10−19.

You may use the forumla

∞
∫

−∞

dx e−λx2

=

√

π

λ
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#7 : UNDERGRADUATE QM

PROBLEM:

Harmonic oscillator coupled to qbit, with a hidden symmetry

Consider a quantum system consisting of a harmonic oscillator with a spin-12
degree of freedom. A basis for the Hilbert space is made up states of the
form

{

|n , ↑ ⟩ , |n , ↓ ⟩ , n = 0, 1, 2, . . .
}

.

where n is the eigenvalue of a†a, where a and a† are the ladder operators.
Acting on the spin variable in this basis, the Pauli matrices are

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

The Hamiltonian is

Ĥ0 ≡ !ω σz + !ω
(

a†a+ 1
2

)

,

where ω is a parameter1.

1) Describe the spectrum of Ĥ0, beginning with the state of lowest energy,
the ground state |G ⟩. More precisely, find the five lowest energy eigenstates
along with their eigenvalues.

To understand this spectrum better, consider the operator

Q̂ ≡ σ− ⊗ a† ,

where σ± ≡ 1
2 (σ

x ± iσy).

2) What is
[

σ± , σz
]

?

3) What is
[

a†a , a†
]

?

4) What is Q̂ |G ⟩? What is Q̂† |G ⟩?

1A more precise expression for the Hamiltonian is

Ĥ0 ≡ !ω σ
z

⊗ 1 + !ω1 ⊗

(

a
†
a+ 1

2

)

.
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5) Show that
[

Ĥ0 , Q̂
]

= 0.

This result shows that Q̂ generates a symmetry of Ĥ0. In the next parts of
this problem, we try to understand the nature of this symmetry.

6) Show that Q̂2 = 0.

7) Show that
(

Q̂+ Q̂†
)2

=
1

!ω
Ĥ0 .

[Cultural remarks: This relationship, which is called a supersymmetry alge-

bra, explains the value of the ground state energy given the result of part
(4). The generator Q̂ is called the supercharge. The symmetry it generates
is called supersymmetry and is weird because the generator squares to zero.
It is therefore sometimes called a fermionic symmetry.]
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#8 : UNDERGRADUATE QM (II)

PROBLEM:

A crude model of the H+
2 ion.

Consider a system consisting of two (heavy) nuclei each with charge +e and
one (light) electron, with charge −e. We wish to understand how these
objects might form a H+

2 ion, using an approximation (Born-Oppenheimer),
where we treat the nuclei classically. In particular, we would like to develop
a model for V (R), the potential for the separation of the two nuclei.

In the absence of the electron, the two nuclei would experience Coulomb
repulsion: VC(R) = +e2/R.

Let EB < 0 denote the binding energy of the electron in the Hydrogen atom
in its groundstate. Let ∆(R) denote the amplitude for an electron to tunnel
from one nucleus to the other, when the nuclei are at fixed separation R;
that is, the electron Hamiltonian contains a term of the form

Ĥtunnel = −∆(R)
(

| 2 ⟩⟨ 1 | + | 1 ⟩⟨ 2 |
)

,

where | 1 ⟩ and | 2 ⟩ denote the groundstates of the electron near each of the
two nuclei.

1) Treating R as fixed, and ignoring excited hydrogen states, find the ground-
state energy of the electron, E0(R), in terms of ∆, EB .

2) Supposing that ∆(R) = AR−1/2 for some constant A (not actually a very
good model), find the size of the H+

2 ion predicted by this model.

In this final part of the problem, we make a better estimate for ∆(R).
Suppose the electron moves in the Coulomb potential produced by the two
nuclei at x = 0 and x = R. Treat the problem as one-dimensional.

3) Using WKB, find an approximate expression for the amplitude for an
electron with energy EB ≡ −e2/a < 0 to tunnel from one nucleus to the
other. Do not do the integral, but estimate its leading dependence on R in
the limit a ≪ R.
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#9 : UNDERGRADUATE General Physics

One of the great physicists of the 20th century, G. I. Taylor, is known for
estimating the energy released by the explosion of an atomic bomb from a
series of timelapse pictures from the Trinity test in New Mexico in 1945 (see
below for the photograph). Taylor assumed that the explosion started at a
point and propagated radially outward as a spherical shock wave.

A. Taylor assumed, R = f(ρ, E, t), where R is the radius of the fireball,
ρ = the density of surrounding air, t = time since the explosion, E = en-
ergy released. Find the functional form of f . Hint: use dimensional analysis.

B. One ton of TNT releases of approximately 4.2 × 109 J of energy. Using
the density of air, ρ = 1.2 kg/m3, the result from B, and the picture below,
estimate how many equivalent tons of TNT energy was released from the
explosion at the Trinity test. Assume f involves no dimensionful physical
constants.
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#10 : UNDERGRADUATE Mathematical Physics

Find the general solution to the differential equation

d2x

dt2
+ ω2

0 x = A δ(t − t0) ,

for all t ≥ 0. You should assume t0 > 0, and that the initial conditions x(0)
and ẋ(0) are unspecified (and hence must appear in your answer).
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PART II : PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. (E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
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c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
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nation is over. At the conclusion of the examination period, please staple
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proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.
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#11 : GRADUATE MECHANICS

PROBLEM: A spring pendulum consists of a mass m attached to one end
of a massless spring with spring constant k. The other end of the spring
is tied to a fixed support. When no weight is on the spring, its length
is l. Assume that the motion is confined to a vertical plane. Derive the
equations of motion. Solve the equations of motion in the approximation of
small angular and radial displacements from equilibrium.



CODE NUMBER: ————– SCORE: ———— 2

#12 : GRADUATE MECHANICS

PROBLEM: A non-relativistic electron of mass m, charge −e in a cylindrical
magnetron moves between a wire of radius a at a negative electric potential
−φ0 and a concentric cylindrical conductor of radius R at zero potential.
There is a uniform constant magnetic field B parallel to the axis. Use
cylindrical coordinates r, θ, z. The electric and magnetic vector potentials
can be written as

φ = −φ0
ln(r/R)

ln(a/R)
, A = 1

2
Br êθ .

Here, êθ is a unit vector in the direction of increasing azimuthal angle θ.

(a) Write the Lagrangian and Hamiltonian functions.

(b) Show that there are three constants of the motion. Write them down,
and discuss the kinds of motion which can occur.
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#13 : GRADUATE ELECTROMAGNETISM

PROBLEM: Consider two long concentric cylindrical shells, of radii r = a
and r = b (with b > a and we use cylindrical coordinates (r, θ, z), with
r the distance perpendicular to the z-axis). Both cylinders are centered
along the z axis. Each cylinder is wrapped with a wire (winding in the êθ
direction) with N turns of the wire per unit length. The wire wrapping the
outer cylinder (radius b) carries current I(t), and that wrapping the inner
cylinder (radius a) carries current −I(t). (Imagine that the wire connects
from the outer to the inner cylinder at z = +∞, with a current source at
z = −∞.) The current I(t) is slowly varying in time; so you can work to
leading non-trivial order in an expansion in terms of time-derivatives of I(t).

(a) Find B (to order (d/dt)0) and E (to order (d/dt)1) everywhere.

(b) Find the magnetic field energy per unit length, and the associated self-
inductance per unit length of the system.

(c) Find the energy flux through the boundaries of the region between the
shells, and verify energy conservation.
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#14 : GRADUATE ELECTROMAGNETISM

PROBLEM: Consider a cylindrically symmetric setup, with two conducting
cylindrical shells and long wire along the êz symmetry axis of the cylinders.
The wire carries current I. One conducting cylindrical shell, at r = a and
of length L, carries charge Q. The other conducting cylindrical shell, at
r = b (with b > a), also of length L, carries charge −Q. These charges are
uniformly distributed, and treat L ≫ b−a, so edge effects can be neglected.

(a) Find the total electromagnetic momentum p
field

.

(b) Now suppose that the current I in the wire slowly drops to zero. Directly
compute the total impulse

∫

dtF delivered to the cylindrical shells due to
the induced electric force. Does it agree with momentum conservation?
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#15: STATISTICAL MECHANICS

A gas of bosonic particles in d = 3 dimensions obeys the single particle
dispersion ε(k) = ε0 (ka)

3/2.

(a) Find the single particle density of states per unit volume g(ε).

(b) Find the Bose condensation temperature Tc(n), where n is the number
density of the bosons. You may express numerical prefactors in terms of
dimensionless integrals, but it is useful to recall the Riemann zeta function
ζ(p) =

∑∞
n=1

n−p.

(c) Suppose instead that the particles are spin-1
2
fermions with number den-

sity n. What is the Fermi energy at T = 0?
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#16: STATISTICAL MECHANICS

Consider a spin-2 Ising model with Hamiltonian

H = −1

2

∑

i,j

Jij Si Sj −H
∑

i

Si

where Si ∈ {−2,−1, 0, 1, 2}. The system is on a simple cubic lattice, with
nearest neighbor coupling J1/kB = 40K and next-nearest neighbor coupling
J2/kB = 10K. Every site has six nearest neighbors and 12 next-nearest
neighbors.

(a) Derive the mean field Hamiltonian by writing ⟨Si⟩ = m+ δSi and then
neglecting terms quadratic in fluctuations.

(b) Find the mean field free energy F (T,H,N,m).

(c) Find the mean field equation for m.

(d) Find the mean field transition temperature Tc when H = 0.
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#17 : GRADUATE QUANTUM MECHANICS

PROBLEM: Consider the low energy scattering problem in the central poten-
tial V (r) by using the partial-wave method. Assume that V (r) is a short
range potential with the interaction range d beyond which V (r) = 0. The
particle energy is E, and the wavevector k is defined as k =

√

2mE/!2

where m is the mass of the particle.

1) In the low energy limit, i.e., k → 0, the s-wave channel scattering domi-
nates. The scattering wave is approximated by an isotropic outgoing spher-
ical wave as f0 e

ikr/r , where f0 is the s-wave scattering amplitude. Prove
the relation between f0 and the s-wave phase shift δ0,

f0 =
1

k
eiδ0 sin δ0 .

Hint: You may use the asymptotic expansion

eikz ≃
∞
∑

l=0

il
√

4π(2l + 1) jl(kr) Yl0(θ,φ) ,

where jl(u) are the spherical Bessel functions. You only need to extract the
s-wave component, for which jl=0

(u) = sinu
u .

2) The s-wave scattering is often described by the scattering length defined
as follows. Show that the radial wavefunction R(r) in the s-wave channel at
k → 0 can be approximate as

R(r) −→
1

r

(

1−
r

a0

)

,

for d < r ≪ 2π/k. Here a0 is a constant known as the scattering length.

Prove that δ0 satisfies

lim
k→0

k cot δ0(k) = −
1

a0
.

3) Express f0 and the total cross section σtot = 4π|f0|2 in the s-wave ap-
proximation in terms of a0 and k.
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#18 : GRADUATE QUANTUM MECHANICS

A spin-1
2
particle in a magnetic field has Hamiltonian

H = −µσ ·B

1. Write down the Hamiltonian in matrix form in the basis
{

| ↑ ⟩ , | ↓ ⟩
}

of states with respect to the spin states along the z-axis.

2. At t = 0 the particle initially has spin along the direction n̂, which
is given by angles (θ0,φ0) in spherical polar coordinates. Write the
wavefunction |ψ(t = 0) ⟩ in the |↑ ⟩ and |↓ ⟩ basis.

3. Find the state |ψ(t) ⟩ of the particle at time t after evolution using the
Hamiltonian above, assuming the magnetic field is in the z direction.

4. Find the expectation ⟨σ⟩ of the spin operator in the state |ψ(t) ⟩. Find
the polar and azimuthal angles θ(t) and φ(t) which describe this vector
on the Bloch sphere.
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#19 : GRADUATE GENERAL

PROBLEM: Evaluate the inverse Fourier transform

f(x, y) =

∫

d2q

(2π)2
2π e−|q|a

|q|
eiq·r ,

where a > 0 and r = (x, y) in Cartesian coordinates. The q integral is over
the entire two-dimensional plane (qx , qy).



CODE NUMBER: ————– SCORE: ———— 10

#20 : GENERAL

PROBLEM: F. Dyson described in his 1968 article a hydrogen-bomb-powered
spaceship. If each explosion adds w to the velocity of the ship, and the
explosions occur at equal time intervals τ , such a ship would move with
the average acceleration w/τ . The performance of the ship is restricted by
the capacity of shock absorbers to transfer momentum from an impulsively
accelerated pusher plate to the smoothly accelerated ship. Let m be the
total mass of the ship, fm the mass of the pusher plate, and sm the mass
of the shock absorbers. Following Dyson, we assume f = 1/3 and s = 1/50.

a) Based on momentum conservation, what is the change in velocity of
the pusher after each explosion?

b) What is the amount of energy that needs to be absorbed after each
explosion?

c) Graphene — the strongest material currently known — can handle
elastic energy density up to 8 × 106 J/m3. What is the maximum
admissible velocity increment w that can be achieved using shock ab-
sorbers made of graphene?

Figure 1: Bomb-propelled spaceship. Debris from the exploding bombs
transfer momentum to the shock absorbers and hence to the payload.
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#1 : UNDERGRADUATE Mechanics

An astronaut travels to a nearby star system, a distance of 12 light years
away, then immediately turns around and returns; assume an instantaneous
turn around. Both legs of the trip are made at a velocity of 0.6c so that
the trip takes a total travel time of 40 years in the frame of the Earth.
The astronaut’s spaceship sends out a radio ping once per second which is
monitored by the astronaut’s twin sister on earth.
(a) What frequency of pings does she hear initially and for how long.
(b) The frequency shifts after some time. What is the second frequency of
pings and for how long do they last on Earth.
(c) Assuming that there are approximately 3.156 × 107 seconds per year,
how many total pings does she hear?

SOLUTION: Let the spaceship system be the unprimed system.

β = 0.6

γ =
1√

1− 0.62
= 1.25

ν ′1 = 1Hz×
√

1− 0.6

1 + 0.6
= 0.50Hz

t′1 = 20yr + 12 yr = 32 yr

n′
1 = (32 yr)× (3.156 × 107 sec/yr)× (0.50Hz) = 5.05 × 108

ν ′2 = 1Hz×
√

1 + 0.6

1− 0.6
= 2.00Hz

t′2 = 40yr − 32 yr = 8yr

n′
2 = (8yr)× (3.156 × 107 sec/yr)× (2.00Hz) = 5.05 × 108

tout = tback =
12yr

βγ
= 16.0 yr

nout = nback = (16.0 yr)× (3.156 × 107 sec/yr)× (1Hz) = 5.05 × 108 for a check.
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#2 : UNDERGRADUATE Mechanics

PROBLEM: A beam with a mass m can freely rotate in a plane about a pivot
attached to the ceiling, as depicted in the sketch below. Let β denote the
angle between the beam and the vertical. A board with mass m1 lying
on the floor is being pulled to the right at a constant speed with force T .
The coefficients of friction between the beam and the board and between
the board and the floor are µ and µ1, respectively. What is the value of
T ? Under what conditions does the board get jammed, so that pulling the
board becomes impossible?
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#3 : UNDERGRADUATE E & M

PROBLEM: A hollow sphere of radius R is uniformly charged by an electric
charge Q. The sphere is cut in two parts along a plane whose minimum
distance from the sphere’s center is h (see figure). The cutting does not
redistribute the charge. What force is necessary to hold the two parts of the
sphere together?

SOLUTION:

At the outer surface of a charged sphere the electric field strength is

E =
Q

4πε0R2
.

The electric charge per unite surface area is

σ =
Q

4πR2
.

This electric field exerts a force δF = 1
2E δQ on the charge δQ = σδA on

a surface area δA. The factor 1/2 comes from the fact that we should not
include the self-action of δQ on itself. The total electric field is composed
of the self part Eself , which is produced by the charge δQ, and external
part Eext, which is produced by the rest of the charges. The electric field is
E = Eext+Eself at the outer surface and 0 = Eext−Eself at the inner surface
that gives Eext =

1
2E. The force per unit area of the sphere is therefore

δF

δA
= 1

2Eσ =
Q2

32π2ε0R4
= p .
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The component of the force δF along the direction normal to the plane
per the projection of the surface area δA on the plane is p. Therefore,
the total repulsive force between the parts of the sphere F = pAi , where
Ai = π(R2−h2) is the cross-section area of the intersection of the plane and
sphere. This gives

F =
Q2(R2 − h2)

32πε0R4
.
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#4 : UNDERGRADUATE EM (II)

PROBLEM: Charged particles moving through a region of space filled with a
uniform magnetic field travel on curved rather than stright paths.

(a) Given two otherwise identical particles, which is deflected more, the one
with more momentum (p) or the one with less momentum? Explain your
answer in words.

(b) Given two otherwise identical particles, which is deflected more, the one
with more charge (q) or the one with less charge? Explain your answer in
words.

(c) For a relativistic nucleus of charge q = Ze (Z is the number of protons,
e the charge on the electron), the behavior in a magnetic field depends on
R = pc/q where p is the relativistic momentum. Explain why a wide variety
of nuclei less massive than iron (with A nucleons) have similar R values
when their energy per nucleon are the same.

(d) Consider cosmic rays with p = 1011 GeV/c that come from outside our
Galaxy. The radius of curvature of their motion in the disk of our Galaxy
(where the magnetic fields are strongest) is given by

r [m] =
p [GeV/c]

0.3B [T]
,

Here the square brackets denote the units for the various quantities in the
equation. B = 3× 10−10 T is the interstellar magnetic field in the disk. The
disk has a thickness of h = 1019 m (i.e. they travel at least that distance to
reach the sun that is in the middle of the disk). Do we expect to identify
the sources that emitted these particles? Explain your answer.

(e) Over what range of cosmic ray energy do we obtain useful information
on the direction to the sources?

SOLUTION:

(a) The one with less momentum is deflected more. The Lorentz force
F = qv × B that acts to change the direction of motion of the particle is
smaller for smaller velocity v. However, the centrifugal force mv2/r = pv/r
required for the particle to bend with a radius of curvature r is more sensitive
to the momentum. When we equate these two, we find the non-relativistic
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gyroradius r = mv/(qB) that gives the radius of curvature of the particle
path. This is smaller (more deflection) for a smaller momentum.

(b) The one with more charge is deflected more since it has a stronger
coupling to the magnetic field. The Lorentz force F = qv×B is proportional
to the charge q, and the gyroradius is smaller for larger q.

(c) Similar relativistic kinetic energy (K) per nucleon means similar veloc-
ity and relativistic γ factor. In equations, the energy per nucleon K/A =
(γ − 1)Ampc2/A depends on γ alone. Relativistic momentum p = γAmpv,
where mp is the proton rest mass, hence R = pc/Ze = γAmpvc/Ze =
(A/Z)(γmpvc/e). The R values are similar for different nuclei because A/Z
is about 2 for nuclei less massive than iron. In short, the effects of the mass
and charge differences in (a) and (b) largely cancel for nuclei.

(d) The radius of curvature r = 1011/(0.3× 3× 10−10) = 1021m. The angle
of deflection is then about r/h = 0.01 radians or 0.5 degrees. This means
that the direction from which the particles are detected is within 0.5 degrees
of the direction to the source, sufficiently small that we might identify the
source if they are in some other way conspicuous and rare enough to have
less than about 1 per square degree on the sky.

(e) At low energies, say E < 1017 eV, the radius of curvature is much less
than the path length in the disk, and particles spiral around in the disk
before arriving from nearly random directions. At the highest high energies
the spiraling in the magnetic field of the disk is minimal.



CODE NUMBER: ————– SCORE: ———— 7

#5 : UNDERGRADUATE StatMech

Find the mean energy density u, particle density n, and entropy density s
for black-body radiation at temperature T .

1. Write the answers in terms of dimensionless integrals.

2. Evaluate the integrals using a series expansion in terms of

ζ(s) =
∞
∑

n=1

1

ns

SOLUTION:

The density of states is 2 d3k/(2π)3, where the initial factor of 2 accounts
for both photon polarizations.

The mean value of f(k) for any function of k is

⟨f⟩ = 2

∫

d3k

(2π)3
f(k)

exp(!ck/kBT )− 1
=

1

π2

∞
∫

0

dk
k2 f(k)

exp(!ck/kBT )− 1

since the photon energy is E = !ω = !ck. Let !ck ≡ xkBT ,

⟨f⟩ =
1

π2

(

kBT

!c

)3
∞
∫

0

dx
x2f(xkBT/!c)

exp(x)− 1
.

For a power-law, f(k) = kn, we have

⟨kn⟩ =
1

π2

(

kBT

!c

)3
∞
∫

0

dx
xn+2

exp(x)− 1
.

The integral can be evaluated by expansion,

In =

∞
∫

0

dx
xn+2

exp(x)− 1
=

∞
∫

0

dxxn+2
∞
∑

j=1

e−jx

= (n+ 2)!
∞
∑

j=1

1

jn+3
= (n+ 2)! ζ(n + 3) .
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Therefore the average is

⟨kn⟩ =
(n+ 2)! ζ(n + 3)

π2

(

kBT

!c

)3

.

The particle number density is ⟨1⟩ and the energy density is ⟨!ck⟩, so

n =
I0
π2

(

kBT

!c

)3

=
2 ζ(3)

π2

(

kBT

!c

)3

u =
I1
π2

(

kBT

!c

)4

!c =
6 ζ(4)

π2

(

kBT

!c

)4

!c

We have

u = aT 4

du = 4 aT 3 dT = T ds

so that
ds = 4 aT 2 dT

and integrating from T = 0 to T with s = 0 at T = 0 gives

s = 4
3aT

3 =
4u

3T
=

8 ζ(4)

π2

(

kB

!c

)4

!c T 3 .

no 3 in the denominator by the Arvoas identity 24/3=8
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#6 : UNDERGRADUATE StatMech

1.5 mol of H2 considered as an ideal diatomic gas with 5 degrees of freedom
per molecule is initially at a temperature of 300 K and has a volume of 15
liters. It undergoes an isothermal expansion to a volume of 30 liters and
then an adiabatic contraction to the initial volume. By what factor does
the number of gas molecules with the x-component of velocity between 200
m/s and 200.1 m/s change?

Various constants are (in SI units): Avogadro’s number is N
A
= 6.03×1023;

Boltzmann’s constant kB = 1.38×10−23; mass of a protonmp = 1.67×10−27;
molar mass of H2 is 0.002 kg; universal gas constant 8.31 J/molK; charge of
electron (in magnitude) e = 1.6× 10−19.

You may use the forumla

∞
∫

−∞

dx e−λx2

=

√

π

λ
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#7 : UNDERGRADUATE QM

PROBLEM:

Harmonic oscillator coupled to qbit, with a hidden symmetry

Consider a quantum system consisting of a harmonic oscillator with a spin-12
degree of freedom. A basis for the Hilbert space is made up states of the
form

{

|n , ↑ ⟩ , |n , ↓ ⟩ , n = 0, 1, 2, . . .
}

.

where n is the eigenvalue of a†a, where a and a† are the ladder operators.
Acting on the spin variable in this basis, the Pauli matrices are

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

The Hamiltonian is

Ĥ0 ≡ !ω σz + !ω
(

a†a+ 1
2

)

,

where ω is a parameter1.

1) Describe the spectrum of Ĥ0, beginning with the state of lowest energy,
the ground state |G ⟩. More precisely, find the five lowest energy eigenstates
along with their eigenvalues.

To understand this spectrum better, consider the operator

Q̂ ≡ σ− ⊗ a† ,

where σ± ≡ 1
2 (σ

x ± iσy).

2) What is
[

σ± , σz
]

?

3) What is
[

a†a , a†
]

?

4) What is Q̂ |G ⟩? What is Q̂† |G ⟩?
1A more precise expression for the Hamiltonian is

Ĥ0 ≡ !ω σ
z

⊗ 1 + !ω1 ⊗

(

a
†
a+ 1

2

)

.
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5) Show that
[

Ĥ0 , Q̂
]

= 0.

This result shows that Q̂ generates a symmetry of Ĥ0. In the next parts of
this problem, we try to understand the nature of this symmetry.

6) Show that Q̂2 = 0.

7) Show that
(

Q̂+ Q̂†
)2

=
1

!ω
Ĥ0 .

[Cultural remarks: This relationship, which is called a supersymmetry alge-

bra, explains the value of the ground state energy given the result of part
(4). The generator Q̂ is called the supercharge. The symmetry it generates
is called supersymmetry and is weird because the generator squares to zero.
It is therefore sometimes called a fermionic symmetry.]

SOLUTION:

1. To put the answer in context, we describe the spectrum of the more
general Hamiltonian,

Ĥ ≡ µσz + !ω
(

a†a+ 1
2

)

.

For µ > 0, the ground state is

|G ⟩ = |↓z ⟩ ⊗ | 0 ⟩ .

Its energy is given by ε0, with

Ĥ |G ⟩ =
(

−µ+ 1
2!ω

)

|G ⟩ = ε0 |G ⟩ .

If µ < !ω, the next excited state is obtained by flipping the spin and
leaving the oscillator alone:

|↑z ⟩ ⊗ | 0 ⟩ has energy ε0 + µ .

If 2µ < !ω, the next state up in energy is

|↓z ⟩ ⊗ | 1 ⟩ has energy ε0 + !ω .
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In general, the states come in pairs where

|↓z ⟩ ⊗ |n+ 1 ⟩ and |↑z ⟩ ⊗ |n ⟩

have approximately the same energy. So: when µ = !ω, the ground-
state energy is zero, and all the excited states are doubly degenerate.

2. We have
[

σ± , σz
]

= ±σ± .

They are raising and lowering operators for σz.

σ+|↑z ⟩ = 0 , σ−|↓z ⟩ = |↑z ⟩ , σ−|↑z ⟩ = |↓z ⟩ , σ−|↓z ⟩ = 0 .

In this basis, they are the matrices

σ+ =

(

0 1
0 0

)

, σ− =

(

0 0
1 0

)

.

3. One finds
[

a†a , a†
]

= a†.

4. Find
Q̂ |G ⟩ = σ−a† |↓z ⟩ ⊗ | 0 ⟩ = 0 ,

because σ− |↓z ⟩ = 0, and

Q̂† |G ⟩ = σ+a |↓z ⟩ ⊗ | 0 ⟩ = 0 ,

because a | 0 ⟩ = 0.

5. Using parts (2) and (3), we have

[

Q̂ , µσz+!ω (a†a+1
2)
]

= µ
[

σ−,σz
]

a†+!ω σ−
[

a†, a†a
]

= (2µ − !ω) Q̂ .

6. Find
Q̂2 ∝

(

σ−
)2

= 0 .

7. We have
(

Q̂+ Q̂†
)2

= Q̂2 + Q̂Q̂† + Q̂†Q̂+
(

Q̂†
)2

= 0 + Q̂Q̂† + Q̂†Q̂+ 0

= σ−a†σ+a+ σ+aσ−a† = σ−σ+a†a+ σ+σ−aa†
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Now we can use a a† = 1 + a†a to find

(

Q̂+ Q̂†
)2

= a†a
(

σ−σ+ + σ+σ−
)

+ σ+σ− .

But now

σ+σ− =

(

0 1
0 0

)(

0 0
1 0

)

=

(

1 0
0 0

)

, σ−σ+ =

(

0 0
1 0

)(

0 1
0 0

)

=

(

0 0
0 1

)

.

So σ+σ− + σ−σ+ = 1 and σ+σ− = 1
2 (1 + σz) . So:

(

Q̂+ Q̂†
)2

= a†a+ 1
2 (1 + σz) =

1

!ω
Ĥ0

∣

∣

µ=!ω/2
.
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#8 : UNDERGRADUATE QM (II)

PROBLEM:

A crude model of the H+
2 ion.

Consider a system consisting of two (heavy) nuclei each with charge +e and
one (light) electron, with charge −e. We wish to understand how these
objects might form a H+

2 ion, using an approximation (Born-Oppenheimer),
where we treat the nuclei classically. In particular, we would like to develop
a model for V (R), the potential for the separation of the two nuclei.

In the absence of the electron, the two nuclei would experience Coulomb
repulsion: VC(R) = +e2/R.

Let EB < 0 denote the binding energy of the electron in the Hydrogen atom
in its groundstate. Let ∆(R) denote the amplitude for an electron to tunnel
from one nucleus to the other, when the nuclei are at fixed separation R;
that is, the electron Hamiltonian contains a term of the form

Ĥtunnel = −∆(R)
(

| 2 ⟩⟨ 1 | + | 1 ⟩⟨ 2 |
)

,

where | 1 ⟩ and | 2 ⟩ denote the groundstates of the electron near each of the
two nuclei.

1) Treating R as fixed, and ignoring excited hydrogen states, find the ground-
state energy of the electron, E0(R), in terms of ∆, EB .

2) Supposing that ∆(R) = AR−1/2 for some constant A (not actually a very
good model), find the size of the H+

2 ion predicted by this model.

In this final part of the problem, we make a better estimate for ∆(R).
Suppose the electron moves in the Coulomb potential produced by the two
nuclei at x = 0 and x = R. Treat the problem as one-dimensional.

3) Using WKB, find an approximate expression for the amplitude for an
electron with energy EB ≡ −e2/a < 0 to tunnel from one nucleus to the
other. Do not do the integral, but estimate its leading dependence on R in
the limit a ≪ R.

SOLUTION:
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1. The Hamiltonian for the electron is a 2× 2 matrix:

Ĥ = EB1 −∆σx ,

whose eigenvalues are EB ± |∆|, the lower of which is

E0(R) = EB − |∆(R)| .

2. So the effective potential for R is

V (R) = VC(R) + E0(R) =
e2

R
+ EB − |∆(R)| .

With the given form ∆(R) = AR−1/2, we have that V (R) is minimized
when

0 =
dV

dR

∣

∣

∣

∣

R=R⋆

= −
e2

R2
⋆
+

A

2R3/2
⋆

,

so

R⋆ =
4e4

A2
.

2 4 6 8 10
R!Ξ

"3

"2

"1

1

e2

R
" #0$

"R!Ξ

e%1, Ξ2#0%10

3. The tunneling amplitude can be approximated as

∆(R) ∝ exp

{

− i

x+
∫

x−

dx
√

p(x)

}

,
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where p(x) =
√

2m(EB − V (x)) is the WKB momentum, and x± are
the turning points where p(x±) = 0. Since EB < V (x) this is real and
small:

∆(R) ∝ exp

{

−
√
2m

x+
∫

x−

dx

√

e2

a
−

e2

x
−

e2

x−R

}

≡ e−I .

The integral is

I =
√
2m

x+
∫

x−

dx

√

e2

a
−

e2

x
−

e2

x−R

=
√
2me2

x+
∫

x−

dx

√

x(x−R)− a(x−R)− ax

x(x−R)a
.

The integral can be non-dimensionalized (i.e. we can extract the de-
pendence on R) by letting y = x/R :

I =

√

2me2

a
R

y+
∫

y−

dy

√

y − y2 + a
R (2y − 1)

y(1− y)

=

√

2me2

a
R

y+
∫

y−

dy

√

(y − y−)(y+ − y)

y(1− y)
,

where y± = x±/R. Now notice that when a/R → 0, the integrand
is 1, and the range of integration is (y−, y+) → (0, 1). Therefore,
the leading term in the expansion in a/R is ∆(R) = ∆0 e−R/ξ , with
ξ =

√

a/2me2. The R-dependence of the fluctuation contribution, ∆0,
is subleading.

(This last part was not required.) With the potential E0(R) = ∆0 e−R/ξ+
const, extremizing V (R) produces a transcendental equation:

0 = −
e2

R2
+

∆0

ξ
e−R/ξ ⇒

e2R2

ξ∆0
= eR/ξ .

Since the RHS of the second equation varies much more rapidly with
R than the LHS, equality is determined mostly by R ∼ ξ. A solution
only exists if e2/ξ > ∆0.
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2 4 6 8 10
R!Ξ

"3

"2

"1

1

e2

R
" #0$

"R!Ξ

e%1, Ξ2#0%10
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#9 : UNDERGRADUATE General Physics

One of the great physicists of the 20th century, G. I. Taylor, is known for
estimating the energy released by the explosion of an atomic bomb from a
series of timelapse pictures from the Trinity test in New Mexico in 1945 (see
below for the photograph). Taylor assumed that the explosion started at a
point and propagated radially outward as a spherical shock wave.

A. Taylor assumed, R = f(ρ, E, t), where R is the radius of the fireball,
ρ = the density of surrounding air, t = time since the explosion, E = en-
ergy released. Find the functional form of f . Hint: use dimensional analysis.

B. One ton of TNT releases of approximately 4.2 × 109 J of energy. Using
the density of air, ρ = 1.2 kg/m3, the result from B, and the picture below,
estimate how many equivalent tons of TNT energy was released from the
explosion at the Trinity test. Assume f involves no dimensionful physical
constants.

SOLUTION:

A. R = ρaEbtc, where a, b, c are the exponents to be determined. The
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dimensions of the four variables are
R ∼ [L]
ρ ∼ [ML−3]
E ∼ [ML2T−2]
t ∼ [T ]

Plug these into R = ρaEbtc and we find

-3a + 2b = 1 (from L)
a + b = 0 (from M)
-2b + c = 0 (from T)

and, thus, R = ρ−1/5 E1/5 t2/5.

B. from the solution in B, we obtain E ∼ R5ρ/t2. At t = 0.025 s, R = 100m.
Plug these and ρ = 1.2 kg/m3, E ≈ 2 × 1013 kgm2/s2 = 2 × 1013 J. The
explosive energy in one ton of TNT is roughly 4.2 gigajoules, hence our
result is about 5000 tons of TNT.
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#10 : UNDERGRADUATE Mathematical Physics

Find the general solution to the differential equation

d2x

dt2
+ ω2

0 x = A δ(t − t0) ,

for all t ≥ 0. You should assume t0 > 0, and that the initial conditions x(0)
and ẋ(0) are unspecified (and hence must appear in your answer).

SOLUTION:

The Laplace transform of x(t) is defined as

x̌(z) =

∞
∫

0

dt x(t) e−zt .

The inverse is

x(t) =

c+i∞
∫

c−i∞

dz

2πi
x̌(z) e+zt ,

where the line Re(z) = c lies to the right of any singularities of x̌(z).

To solve, we multiply the LHS and RHS of the original ODE by e−zt and
integrate from t = 0 to t = ∞. This results in

(

z2 + ω2
0

)

x̌(z)− ẋ(0)− z x(0) = Ae−zt0 ,

where the terms on the LHS involving x(0) and ẋ(0) arise from integration
by parts. Thus, we have

x̌(z) =
Ae−zt0 + ẋ(0) + z x(0)

z2 + ω2
0

,

and

x(t) =

c+i∞
∫

c−i∞

dz

2πi

{

ez(t−t0)

z2 + ω2
0

+

[

ẋ(0) + z x(0)
]

ezt

z2 + ω2
0

}

.

We choose c > 0 so the line Re(z) = c lies to the right of the poles at
z = ±iω0. For the first term in the curly brackets on the RHS, we may close
in the left half plane provided t > t0. In this case we pick up the residues
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at z = ±iω0. If, however, t < t0, then we must close in the right half plane,
where there are no residues, and the integral of this term then gives zero.
Applying Cauchy’s theorem, then, we have

x(t) = A

[

eiω0(t−t0)

2iω0
+

e−iω0(t−t0)

−2iω0

]

Θ(t− t0) +

[

ẋ(0) + iω0 x(0)

2iω0
eiω0t +

ẋ(0)− iω0 x(0)

−2iω0
e−iω0t

]

=
A

ω0
sinω0(t− t0)Θ(t− t0) + x(0) cosω0t+

ẋ(0)

ω0
sinω0t ,

where Θ(t− t0) is the step function.
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#11 : GRADUATE MECHANICS

PROBLEM: A spring pendulum consists of a mass m attached to one end
of a massless spring with spring constant k. The other end of the spring
is tied to a fixed support. When no weight is on the spring, its length
is l. Assume that the motion is confined to a vertical plane. Derive the
equations of motion. Solve the equations of motion in the approximation of
small angular and radial displacements from equilibrium.

SOLUTION:

Use coordinates r and θ as shown above. The mass m has Cartesian coordi-
nates (r sin θ , −r cos θ) and velocity components (rθ̇ cos θ+ ṙ sin θ , rθ̇ sin θ−
ṙ cos θ) and hence kinetic energy

T = 1
2
m(ṙ2 + r2θ̇2),

and potential energy

V = 1
2k(r − l)2 −mgr cos θ.

The Lagrangian is therefore

L = T − V = 1
2
m(ṙ2 + r2θ̇2)− 1

2
k(r − l)2 +mgr cos θ.
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The Euler-Lagrange equations for the generalized coordinate qi are

d

dt

(
∂L

∂q̇i

)
−
∂L

∂qi
= 0

then give the equations of motion

mr̈ −mrθ̇2 + k(r − l)−mg cos θ = 0,

rθ̈ + 2ṙθ̇ + g sin θ = 0.

The equilibrium configuration is r = r0 and θ = θ0,

r0 = l +
mg

k
, θ0 = 0 .

For small oscillations about equilibrium, θ is a small angle. Let ρ = r − r0
with ρ≪ r0 and write the equations of motion as

mρ̈−m(r0 + ρ)θ̇2 + kρ = 0,

(r0 + ρ)θ̈ + 2ρ̇θ̇ + gθ = 0,

or, neglecting higher order terms of the small quantities ρ, ρ̇, θ̇,

ρ̈+
k

m
ρ = 0,

θ̈ +
g

r0
θ = 0.

Thus both the radial and angular displacements execute simple harmonic
motion about equilibrium with angular frequencies

√
k/m and

√
g/r0 re-

spectively. The solutions are therefore

ρ = A cos

(√
k

m
t+ φ1

)

,

which is equivalent to

r = l +
mg

k
+A cos

(√
k

m
t+ φ1

)

,

and

θ = B cos

(√
kg

kl +mg
t+ φ2

)

,

where the constants A,φ1, B,φ2 are to be determined from the initial con-
ditions.
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#12 : GRADUATE MECHANICS

PROBLEM: A non-relativistic electron of mass m, charge −e in a cylindrical
magnetron moves between a wire of radius a at a negative electric potential
−φ0 and a concentric cylindrical conductor of radius R at zero potential.
There is a uniform constant magnetic field B parallel to the axis. Use
cylindrical coordinates r, θ, z. The electric and magnetic vector potentials
can be written as

φ = −φ0
ln(r/R)

ln(a/R)
, A = 1

2Br êθ .

Here, êθ is a unit vector in the direction of increasing azimuthal angle θ.

(a) Write the Lagrangian and Hamiltonian functions.

(b) Show that there are three constants of the motion. Write them down,
and discuss the kinds of motion which can occur.

SOLUTION: (a) In SI units, the Lagrangian is

L = T − V = 1
2mṙ2 + eφ− eA · ṙ .

As
ṙ = (ṙ , rθ̇ , ż) , A = (0 , 1

2Br , 0) ,

the above becomes

L = 1
2
m(ṙ2 + r2θ̇2 + ż2) + eφ− 1

2
eBr2θ̇ .
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The generalized momenta are

pr =
∂L

∂ṙ
= mṙ

pθ =
∂L

∂θ̇
= mr2θ̇ − 1

2
eBr2

pz =
∂L

∂ż
= mż ,

and the Hamiltonian is

H = pr ṙ + pθ θ̇ + pz ż − L

= 1
2m(ṙ2 + r2θ̇2 + ż2)− eφ

=
p2r
2m

+

(
pθ +

1
2
eBr2

)2

2mr2
+

p2z
2m

− eφ

=
1

2m

[
p2r +

(pθ
r

+ 1
2eBr

)2
+ p2z

]
− eφ .

(b) As H is not an explicit function of time, it is a constant of the motion.
Also, as

pi = −
∂H

∂qi
,

if H does not contain qi explicitly, pi is a constant of the motion. Hence pθ
and pz are constants of the motion. SinceH is not explicitly time-dependent,
H = E is also constant. Thus,

E = 1
2m(ṙ2 + r2θ̇2 + ż2)− eφ

pθ = mr2θ̇ − 1
2eBr2

pz = mż

are all constants of the motion. An electron emitted from the inner wire
will spiral out conserving its z velocity, and will reach the outer cylinder if
the value of B is not too large. If the magnetic field exceeds some critical
value Bc the electron will spiral out until it asymptotically reaches a critical
radius r = Rc < R.
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#13 : GRADUATE ELECTROMAGNETISM

PROBLEM: Consider two long concentric cylindrical shells, of radii r = a
and r = b (with b > a and we use cylindrical coordinates (r, θ, z), with
r the distance perpendicular to the z-axis). Both cylinders are centered
along the z axis. Each cylinder is wrapped with a wire (winding in the êθ
direction) with N turns of the wire per unit length. The wire wrapping the
outer cylinder (radius b) carries current I(t), and that wrapping the inner
cylinder (radius a) carries current −I(t). (Imagine that the wire connects
from the outer to the inner cylinder at z = +∞, with a current source at
z = −∞.) The current I(t) is slowly varying in time; so you can work to
leading non-trivial order in an expansion in terms of time-derivatives of I(t).

(a) Find B (to order (d/dt)0) and E (to order (d/dt)1) everywhere.

(b) Find the magnetic field energy per unit length, and the associated self-
inductance per unit length of the system.

(c) Find the energy flux through the boundaries of the region between the
shells, and verify energy conservation.

SOLUTION:

(a) As a warmup, consider the case of a single shell of radius r = b, which
has Bin = (4πIN/c)ẑ, and Bout = 0. The EMF around a circle of radius r
is
∮
E · dr = 2πrEθ = −Φ̇/c, with Φ = πBinr

2 for r < b and Φ = πBinb
2 for

r > b. This gives Ein = −(2πİNr/c2) êθ, and Eout = −(2πİNb2/rc2) êθ.

Obtain the two shell solution by superposition. In the region r < a, we have
E = B = 0. In the region a ≤ r ≤ b, we have Bin = (4πIN/c) êz , and
Ein = (2πİN/c2)(a2r−1 − r) êθ. In the region r > b, we have Bout = 0, and
Eout = −(2πİN/c2)(b2 − a2) r−1 êθ.

(b) The magnetic field energy is Ufield =
∫
B2dV/8π, so per unit length

of the cylinder we have Ufield/L = (b2 − a2)B2
in/8 = 2π2I2N2(b2 − a2)/c2.

Writing this as 1
2LI

2, with L the self-inductance per unit length is given by
L = 4π2N2(b2 − a2)/c2.

(c) The Poynting vector is S = cE × B/4π, which is radial and vanishes
at the r = a surface. Integrating S over the surface just inside r = b gives∫

∂V

S · n̂ dA/L = −4π2IİN2(b2 − a2)/c2, where n̂ = êr is radially outward.
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This agrees with
dUfield

dt
+

∫

∂V

S · n̂ dA = 0 .
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#14 : GRADUATE ELECTROMAGNETISM

PROBLEM: Consider a cylindrically symmetric setup, with two conducting
cylindrical shells and long wire along the êz symmetry axis of the cylinders.
The wire carries current I. One conducting cylindrical shell, at r = a and
of length L, carries charge Q. The other conducting cylindrical shell, at
r = b (with b > a), also of length L, carries charge −Q. These charges are
uniformly distributed, and treat L ≫ b−a, so edge effects can be neglected.

(a) Find the total electromagnetic momentum pfield.

(b) Now suppose that the current I in the wire slowly drops to zero. Directly
compute the total impulse

∫
dtF delivered to the cylindrical shells due to

the induced electric force. Does it agree with momentum conservation?

SOLUTION:

The magnetic field is B = (2I/rc) êθ . The electric field is non-zero only in
the region a < r < b, where E = (2Q/rL) êr. The initial field momentum is

pfield =
1

4πc

∫
E ×B dV =

2IQ

c2
ln(b/a) êz .

The impulse is

pimpulse =

∞∫

0

dt

{ ∫

r=a

dAa σaE
ind(r = a, t) +

∫

r=b

dAb σb E
ind(r = b, t)

}

,

where σa = Q/2πaL is the charge density on the inner cylinder, and σb =
−Q/2πbL is the charge density on the outer cylinder. The induced field
Eind is in the êz direction: Eind = Eind

z êz. The area differentials are dAa =
2π dl dz, where l is a circumference coordinate ranging over [0, 2πa] on the
inner cylinder and over [0, 2πb] on the outer cylinder. Thus,

pimpulse = Q

∞∫

0

dt
(
Eind

z (a, t)− Eind
z (b, t)

)
= Q

∞∫

0

dt

b∫

a

dr
∂Eind

z

∂r

= −
Q

c

∞∫

0

dt

b∫

a

dr
∂Bθ(r, t)

∂t
=

Q

c

b∫

a

dr Bθ(r, t = 0) =
2IQ

c2
ln(b/a) êz ,

which agrees with the initial field momentum, as expected by momentum
conservation.
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#15: STATISTICAL MECHANICS

A gas of bosonic particles in d = 3 dimensions obeys the single particle
dispersion ε(k) = ε0 (ka)

3/2.

(a) Find the single particle density of states per unit volume g(ε).

(b) Find the Bose condensation temperature Tc(n), where n is the number
density of the bosons. You may express numerical prefactors in terms of
dimensionless integrals, but it is useful to recall the Riemann zeta function
ζ(p) =

∑∞
n=1 n

−p.

(c) Suppose instead that the particles are spin-1
2
fermions with number den-

sity n. What is the Fermi energy at T = 0?

SOLUTION:

(a) We have

g(ε) dε =
d3k

(2π)3
=

k2

2π2
dk

and hence

g(ε) =
k2

2π2 ε′(k)
=

(ka)3/2

3π2a3ε0
=

ε

3π2a3ε20
.

(b) The number density in terms of fugacity z and temperature T > Tc is

n(z, T ) =

∞∫

0

dε
g(ε)

z−1 exp(ε/k
B
T )− 1

,

To find Tc, set z = 1:

n =

∞∫

0

dε
g(ε)

exp(ε/k
B
T )− 1

=
1

3π2a3ε20

∞∫

0

dε ε
{
e−ε/k

B
T + e−2ε/k

B
T + . . .

}
=

ζ(2)

3π2a3

(
k
B
T

ε0

)2
,

where ζ(p) =
∑∞

n=1 n
−p. One has ζ(2) = π2

6 , hence

Tc = 3
√
2 (na3)1/2 ε0/kB

.
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It is OK to leave your result in terms of ζ(2).

(c) The number density is

n = 2×
1

8π3
×

4

3
πk3

F
⇒ n =

k3
F

3π2
.

Sticking this into the dispersion, we have

ε
F
= (3π2na3)1/2ε0 .
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#16: STATISTICAL MECHANICS

Consider a spin-2 Ising model with Hamiltonian

H = −1
2

∑

i,j

Jij Si Sj −H
∑

i

Si

where Si ∈ {−2,−1, 0, 1, 2}. The system is on a simple cubic lattice, with
nearest neighbor coupling J1/kB = 40K and next-nearest neighbor coupling
J2/kB = 10K. Every site has six nearest neighbors and 12 next-nearest
neighbors.

(a) Derive the mean field Hamiltonian by writing ⟨Si⟩ = m+ δSi and then
neglecting terms quadratic in fluctuations.

(b) Find the mean field free energy F (T,H,N,m).

(c) Find the mean field equation for m.

(d) Find the mean field transition temperature Tc when H = 0.

SOLUTION:

(a) The mean field Hamiltonian is

HMF = 1
2NĴ(0)m2 −

(
H + Ĵ(0)m

)∑

i

Si ,

where
Ĵ(0) =

∑

j

Jij = z1J1 + z2J2 = 360K · kB ,

since there are z1 = 6 nearest neighbors and z2 = 12 next nearest neighbors
on the simple cubic lattice.

(b) Computing the partition function and taking the logarithm, we find the
mean field free energy

F = 1
2NĴ(0)m2−NkBT ln

(

1+2 cosh

(
H + Ĵ(0)m

kBT

)
+2cosh

(
2H + 2Ĵ(0)m

kBT

))

(c) The mean field equation for m is obtained by setting ∂F
∂m = 0. Thus,

m =
2 sinh

(
m+h
θ

)
+ 4 sinh

(
2m+2h

θ

)

1 + 2 cosh
(
m+h
θ

)
+ 2cosh

(
2m+2h

θ

) ,
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with θ = kBT/Ĵ(0) and h = H/Ĵ(0).

(d) Setting the slopes of the LHS and RHS of the above equation to be
identical at m = 0 andH = 0 yields the equation for the critical temperature
Tc. The slope of the LHS is obviously 1, and that of the RHS is easily found
to be 2

θ . Thus, θc = 2, and Tc = 2Ĵ(0) = 720K.
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#17 : GRADUATE QUANTUM MECHANICS

PROBLEM: Consider the low energy scattering problem in the central poten-
tial V (r) by using the partial-wave method. Assume that V (r) is a short
range potential with the interaction range d beyond which V (r) = 0. The
particle energy is E, and the wavevector k is defined as k =

√
2mE/!2

where m is the mass of the particle.

1) In the low energy limit, i.e., k → 0, the s-wave channel scattering domi-
nates. The scattering wave is approximated by an isotropic outgoing spher-
ical wave as f0 e

ikr/r , where f0 is the s-wave scattering amplitude. Prove
the relation between f0 and the s-wave phase shift δ0,

f0 =
1

k
eiδ0 sin δ0 .

Hint: You may use the asymptotic expansion

eikz ≃
∞∑

l=0

il
√

4π(2l + 1) jl(kr) Yl0(θ,φ) ,

where jl(u) are the spherical Bessel functions. You only need to extract the
s-wave component, for which jl=0(u) =

sinu
u .

2) The s-wave scattering is often described by the scattering length defined
as follows. Show that the radial wavefunction R(r) in the s-wave channel at
k → 0 can be approximate as

R(r) −→
1

r

(
1−

r

a0

)
,

for d < r ≪ 2π/k. Here a0 is a constant known as the scattering length.

Prove that δ0 satisfies

lim
k→0

k cot δ0(k) = −
1

a0
.

3) Express f0 and the total cross section σtot = 4π|f0|2 in the s-wave ap-
proximation in terms of a0 and k.

SOLUTION:
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1) In the s-wave channel, the wavefunction R(r) at r → ∞ is

sin kr

kr
+ f0

eikr

r
=

1

2ikr

(
(1 + i2kf0) e

ikr − e−ikr
)

=
1

kr
sin(kr + δ0) e

iδ
0 ,

where 1 + 2ikf0 = e2iδ0 , i.e. the scattering amplitude f0 is related to the
scattering phase shift δ0 by

f0 =
e2iδ0 − 1

2ik
=

1

k
eiδ0 sin δ0.

2) In the s-wave channel, we write the wavefunction as

ψ(r) =
R0(r)√

4π
=

u(r)√
4π r

,

where u(r) satisfies the radial Schrödinger equation as

d2u

dr2
+
(
k2 − 2m

!2
V (r)

)
u = 0 .

For r > R, V (r) = 0, hence k → 0 and r > R, we have u′′(r) = 0, which
says that u(r) is a linear function parameterized as (1 − r/a0), where a0 is
a constant. That is,

u(r) ∝ 1−
r

a0
.

On the other hand, the solution for r > R may also be expressed as a
sinusoidal function with a phase shift as

u(r) ∝ sin(kr + δ0) = sin δ0
(
1 + kr cot δ0 +O(k2)

)
.

Compare these two results, we have

lim
k→0

k cot δ0(k) = − 1
a0

.

3) We have

f = 1
ke

iδ0 sin δ =
1

k cot δ0 − ik
= −

a0
1 + ika0

,

in the long wavelength limit k → 0. Thus, the total scattering cross section
is

σtot = 4π|f0|2 =
4πa20

1 + (ka0)2
.



CODE NUMBER: ————– SCORE: ———— 14

#18 : GRADUATE QUANTUM MECHANICS

A spin-12 particle in a magnetic field has Hamiltonian

H = −µσ ·B

1. Write down the Hamiltonian in matrix form in the basis
{
| ↑ ⟩ , | ↓ ⟩

}

of states with respect to the spin states along the z-axis.

2. At t = 0 the particle initially has spin along the direction n̂, which
is given by angles (θ0,φ0) in spherical polar coordinates. Write the
wavefunction |ψ(t = 0) ⟩ in the |↑ ⟩ and |↓ ⟩ basis.

3. Find the state |ψ(t) ⟩ of the particle at time t after evolution using the
Hamiltonian above, assuming the magnetic field is in the z direction.

4. Find the expectation ⟨σ⟩ of the spin operator in the state |ψ(t) ⟩. Find
the polar and azimuthal angles θ(t) and φ(t) which describe this vector
on the Bloch sphere.

SOLUTION:

1. The Hamiltonian is

H = −µ

(
Bz Bx − iBy

Bx + iBy −Bz

)

2. The spin state satisfies

n̂ · σ |ψ ⟩ = |ψ ⟩

and can be given by projecting an arbitrary state,

|ψ(0) ⟩ ∝ 1
2

(
1 + n̂ · σ

)
|Ψarb ⟩

= 1
2

(
cos θ0 sin θ0 e

−φ
0

sin θ0 e
iφ

0 − cos θ0

)
|Ψarb ⟩ ,

where |Ψarb ⟩ is arbitrary. Taking |Ψarb ⟩ = |↑ ⟩, and normalizing the
resultant state, we obtain

|ψ(0) ⟩ =
(

cos θ0
sin θ0 e

iφ
0

)
.



CODE NUMBER: ————– SCORE: ———— 15

3. When B is in the z direction the states | ± z ⟩ have energy ∓µB so
the state at time t is

|ψ(t) ⟩ =
(

cos θ0e
iωt

sin θ0 e
iφ

0 e−iωt

)
= eiωt

(
cos θ0

sin θ0 e
iφ

0 e−2iωt

)
,

with ω = µB/!

4. Either compute the matrix element explicitly, or note that the second
form of the state is an overall phase times the state in (b) with

θ(t) = θ0 , φ(t) = φ0 − 2ωt .
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#19 : GRADUATE GENERAL

PROBLEM: Evaluate the inverse Fourier transform

f(x, y) =

∫
d2q

(2π)2
2π e−|q|a

|q|
eiq·r ,

where a > 0 and r = (x, y) in Cartesian coordinates. The q integral is over
the entire two-dimensional plane (qx , qy).

SOLUTION:

The evaluation can be done in 2D polar coordinates. Let θ be the angle
between vectors r⃗ = (x, y) and q⃗ = (qx, qy). In addition, let us denote

r =
√

x2 + y2 , q =
√

q2x + q2y .

The Fourier transform becomes

f(x, y) =

2π∫

0

dθ

2π

∞∫

0

dq q

2π

2π

q
eiqr cos θ−qa =

2π∫

0

dθ

2π

1

a− ir cos θ
.

The remaining angular integration is done in the standard way, by changing
variables to z = eiθ, which leads to the contour integral over the unit circle:

2π∫

0

dθ

2π

1

a− ir cos θ
=

∮

|z|=1

dz

2πiz

1

a− i
2 r (z + z−1)

=
2i

r

∮

|z|=1

dz

2πi

1

(z − z1)(z − z2)
,

where z1,2 = (i/r)
(
−a±

√
a2 + r2

)
. Only the pole at z = z1 lies within the

contour. Evaluating the corresponding residue, we obtain

f(x, y) =
1√

a2 + r2
=

1√
a2 + x2 + y2

.
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#20 : GENERAL

PROBLEM: F. Dyson described in his 1968 article a hydrogen-bomb-powered
spaceship. If each explosion adds w to the velocity of the ship, and the
explosions occur at equal time intervals τ , such a ship would move with
the average acceleration w/τ . The performance of the ship is restricted by
the capacity of shock absorbers to transfer momentum from an impulsively
accelerated pusher plate to the smoothly accelerated ship. Let m be the
total mass of the ship, fm the mass of the pusher plate, and sm the mass
of the shock absorbers. Following Dyson, we assume f = 1/3 and s = 1/50.

a) Based on momentum conservation, what is the change in velocity of
the pusher after each explosion?

b) What is the amount of energy that needs to be absorbed after each
explosion?

c) Graphene — the strongest material currently known — can handle
elastic energy density up to 8 × 106 J/m3. What is the maximum
admissible velocity increment w that can be achieved using shock ab-
sorbers made of graphene?

Figure 1: Bomb-propelled spaceship. Debris from the exploding bombs
transfer momentum to the shock absorbers and hence to the payload.

SOLUTION:

a) From momentum conservation, the impulsive velocity given to the
pusher by each explosion is w/f .
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b) The internal energy of the relative motion of the pusher and the ship
is (mw2/2)(1 − f)/f .

c) The elastic strength of the shock absorbers imposes the inequality

mw2

2

1− f

f
≤ smε ,

where ε = 8× 106 J/m3. Hence, the maximum velocity increment is

w =
(

2f
1−f sε

)1/2
≈ 400m/s .

This greatly exceeds 30m/s estimate of Dyson, who envisioned in 1968
shock absorbers made of steel or nylon.


