
INSTRUCTIONS
PART I : PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. (E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks, ) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.
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36. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.
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Figure 36.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).
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#1 : UNDERGRADUATE MECHANICS

Two balls of masses m1 and m2 are placed on top of each other (m1 on top
of m2, with a small gap between them) and then dropped from height h onto
the ground. (a) What is the ratio m1/m2 for which the top ball of mass
m1 receives the largest possible fraction of the total energy of the system
after the collision? What is the height of the bounce for the top ball in this
case? (b) What is the maximum possible height of the bounce for the top
ball, and what is the mass ratio m1/m2 in that case? Consider the collision
elastic and neglect air resistance.
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#2 : UNDERGRADUATE MECHANICS

PROBLEM: Masses m1 and m2 interact with potential energy U = k|!r1 − !r2|.
The system has angular momentum !L = "ẑ in the CM frame. Express your
answers in terms of m1, m2, k, and ".

(a) What is the radius r0 = |!r1 − !r2| of circular orbits?

(b) What is the period T of circular orbits.

(c) Suppose that the circular orbit is slightly perturbed. What is the fre-
quency of small radial oscillations about the circular orbit?
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#3 : UNDERGRADUATE E+M

One end of a horizontal track of width l and negligible resistance is con-
nected to a capacitor of capacitance C charged to voltage V0 of polarity
shown in the figure. The inductance of the assembly is negligible. The sys-
tem is placed in a homogeneous vertical magnetic field B pointing into the
page. A frictionless conducting rod of mass m and resistance R is placed
perpendicular onto the track. After the capacitor is fully charged the posi-
tion of the switch S is changed from the position indicated by the full line
to the position indicated by the dotted line, and the rod starts moving. (a)
in which direction does the rod move, and why? (b) What is the maximum
velocity that the rod acquires?
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#4 : UNDERGRADUATE E+M

For the circuit shown above, find the voltages on all three capacitors
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#5 : UNDERGRADUATE QUANTUM MECHANICS

Consider a system of two spin 1/2 particles that are coupled via an spin-spin
interaction W = a S1 · S2. Here a is a measure of the coupling strength.

How many states does the two particle system have, and what are their
energy levels? Show how you calculate this.
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#6 : UNDERGRADUATE QUANTUM MECHANICS

A one-dimensional non-relativistic particle interacts with the potential

V (x) = λ !2

2mδ(x) (1)

where !2/(2m) has been factored out to simplify the algebra.

1. Calculate the reflection and transmission coefficients (probabilities) as
a function of the incident particle wavenumber k.

2. Calculate the scattering and bound states for λ < 0. Show that there
is a single bound state, and that it is orthogonal to the scattering
states.
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#7 : UNDERGRADUATE THERMO/STAT MECH

In a horizontal cylinder with a wedged piston (see the picture), there is a
monatomic ideal gas to the left of the piston and vacuum to the right of the
piston. The cylinder is thermally insulated and the spring (which connects
the piston with the right wall) is initially relaxed. After the piston is released
and equilibrium is reached, the volume of the gas is doubled. What is the
ratio of the final temperature to the initial temperature? What is the ratio
of the final pressure to the initial pressure? Neglect the heat capacities of
the cylinder, piston and spring.
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#8 : UNDERGRADUATE THERMO/STAT MECH

The rotational energies for planar rotation of a molecule are given by

En = !2

2In
2, n = 0,±1,±2, . . .

where I is the moment of inertia.

1. Compute the rotational partition function in the low and high temper-
ature limits. Keep at least the leading temperature dependent term.

2. Compute the specific heat per molecule (at constant volume) in the
low and high temperature limits
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#9 : UNDERGRADUATE MATH METHODS

Develop a series solution that is regular at x = 0 to the equation:

x2y′′ = xy′ + (x2 −m2)y = 0,

where m is an integer. That is, find a recursion relation that gives the terms
of the series solution.



CODE NUMBER: ————– SCORE: ———— 10

#10 : UNDERGRADUATE EXP-GENERAL

(a) A telescope with a primary mirror with a diameter of 20m records 314
photons / second from a star. Assume that no photons are lost in our
atmosphere and that the telescope plus detector system is 1% efficient. What
is the flux of photons/s/m2?

b) What is the energy flux in W/m2 if the effective wavelength is 500 nm
and h = 6.63× 10−34 Js?

c) You observe this star for a year and see that it inscribes a small circle
with diameter 1/3600 degrees relative to the fainter and much more distant
stars. The circular motions repeats with exactly one year period. What is
the distance to this star? You need to know that the Earth is 150 million
km from the sun.

d) How much energy does this star emit in all directions per second into the
waveband that was detected (in part a)?
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#11 : GRADUATE MECHANICS

PROBLEM: For a one dimensional system with Hamiltonian H = 1
2
(p2− q−2):

(a) Show that D = αpq − Ht is a constant of the motion for a particular
value of the constant α, which you should determine.

(b) Suppose that at time t = 0, p = 0 and q = 1. Find p(t) and q(t) for
t > 0.
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#12 : GRADUATE MECHANICS

A circular cone of height h and angle 2α rolls without slipping inside a fixed
cone of angle 2β, where α < β. The axis of the cone rotates about the axis of
the outer cone with constant angular speed Ω. (a) Find the angular velocity
of the cone, and show that ψ̇ is a constant (φ, θ,ψ are the usual Euler angles
for the orientation of a rigid body). (b) Find the kinetic energy of the cone.
(The moments of inertia of a circular cone of radius R and height h about
its tip are I1 = I2 =

3
5
M(1

4
R2 + h2) and I3 =

3
10
MR2.)
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#13 : GRADUATE E+M

Consider a uniform external magnetic field with the magnetic inductance
!B = Bẑ along the z-direction. Now we put a superconducting ball of radius
R at the origin. The superconductor is a perfect diamagnet, which means
that the B-field inside the superconductor vanishes as !Binside = 0. Intro-
ducing the superconducting ball changes the distribution of !B outside the
ball. Find !B(r, θ,φ) for all r > R.

Hint: the relation between !B and the magnetic field strength !H and the
magnetic moment density !M is !B = !H + 4π !M . We assume that ∇ · !M = 0
inside the superconductor. You can use the method of the magnetic scalar
potential !H(!r) = −∇W (!r) to solve for the distribution of the magnetic
inductance !B(!r) outside the superconducting ball. You need to determine
the correct boundary conditions.

Hint: the general solution to the Laplace equation in spherical coordinates
(r, θ,φ) with axial symmetry can be expressed as

W (r, θ,φ) =
+∞∑

l=0

(alr
l + bl

rl+1 )Pl(cos θ). (2)
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#14 : GRADUATE E+M

A charge density ρ0 is placed at time t = 0 in a small region in the interior
of a homogeneous charge-neutral material that has electrical conductivity
σ.

(a) Derive an expression for the time evolution of the charge density in that
region, ρc(t), with ρc(0) = ρ0. Hint: use a continuity equation.

(b) Estimate how long it will take (in seconds) for the charge density to de-
crease to 1/1000 of its initial value if the material is (i) copper with conduc-
tivity σ = 1/(2µΩcm) and (ii) quartz with conductivity σ = 1/(1024µΩcm).

Use ε0 = 8.85× 10−12C2/Nm2.
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#15 : GRADUATE QUANTUM MECHANICS

Consider two spin-1
2
particles interacting through a Heisenberg Hamiltonian

H = J !S1 · !S2, where !S1,2 =
1
2
!σ1,2 and !σ1,2 are Pauli matrices for particles 1

and 2, respectively.

(a) Solve for the eigenenergy of each eigenstate, and express each eigenstate
in the basis of eigenstates of σ1,z and σ2,z.

(b) Consider an initial two-spin state at t = 0 |Ψ(t = 0)〉 = | ↑〉1 ⊗ | ↓〉2,
where | ↑〉 and | ↓〉 are σz-eigenstates with eigenvalues 1 and −1, respectively.
Calculate the time evolution of the expectation value of S1,z of the first
particle.
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#16 : GRADUATE QUANTUM MECHANICS

Consider scattering of two relativistic spin 1/2 particles, e.g. electron positron,
via a JPC = 1−− resonance, e.g. the Y(4S) resonance, that decays into two
spin 0 particles, e.g. two B mesons. What is the angular distribution of the
outgoing spin 0 particles with regard to the axis of the incoming spin 1/2
particles in the center of mass frame of the spin 1 resonance assuming that
total angular momentum (spin and orbital) is conserved.
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#17 : GRADUATE STAT MECH

Consider a relativistic gas of N indistinguishable massless particles. Assume
that the particles are classical, not quantum, particles.

(a) Calculate the canonical partition function Z(T, V,N).

(b) Find the Helmholtz free energy F (T, V,N).

(c) Determine the pressure p, the entropy S and the chemical potential µ
for this relativistic gas.

(d) Determine the energy U(T, V,N) and the heat capacity at constant
volume CV .

Hint: ∫
dx x2 e−x = Γ(3)
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#18 : GRADUATE STAT MECH

The figure shows the Fermi function f(ε) (full line) for electrons in a metal at
temperature kBT << εF as function of energy ε, with εF the Fermi energy,
and a dotted line that is tangent to the Fermi function at the chemical
potential µ. The electrons are assumed to be non-interacting. Assume
at this low temperature the chemical potential µ ∼ εF is independent of
temperature. Taking as an approximation to the true Fermi function the
horizontal portions joined by the dotted line, derive an expression for the
electronic heat capacity of this metal. Assume the density of states in energy
g(ε) is a constant g, independent of energy. Proceed as follows:

(a) Find the function describing the dotted line and the points where the
dotted line intersects the horizontal lines (values 1 and 0).

(b) Compute the energy of the electrons in the region of energy where f(ε) =
1.

(c) Compute the energy of the electrons in the region where f(ε) is given by
the dotted line.

(d) Compute the heat capacity. How does it compare to the correct result
for the low temperature heat capacity of a metal?
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#19 : GRADUATE MATH METHODS

Using contour integration find the value of

∫
∞

0

ln(x2 + 1)

x2 + 1
dx.

Hint: ln(x2 + 1) = ln(i− x) + ln(i+ x)− iπ.
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#20 : GRADUATE EXP-GENERAL

An emission line is observed over a certain range of wavelengths in a spec-
trum. We suspect that an emission line is present in three adjacent pixels
that contain 62, 71 and 69 photons. The emission line is observed on top of
a background of with the following number of photons per pixel on either
side of the emission line and away from the pixels where the emission is
suspected: 52, 48, 60, 42, 45, 59, 51, 61, 43.

(i) What is the mean background per pixel and the uncertainty in this value?

(ii) What is the statistical significance of the emission line? Examine the
pixels individually.

(iii) What is the statistical significance of the emission line if you examine
the pixels together?

(iv) In the above we assume that we know the pixels in which the emission
line might be found. What is the significance of the emission line if instead
we know the expected width but not the position of the line prior to collect-
ing the data? Assume that the spectrum contained 1024 pixels and the line
could lie anywhere in the spectrum.

It might help to know that for a normal distribution the fraction of the area
lying between −nσ and +nσ is 68.27% for n = 1; 95.45% for n = 2; 99.73%
for n = 3; and 99.9937% for n = 4.
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Figure 36.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).
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#1 : UNDERGRADUATE MECHANICS

Two balls of masses m1 and m2 are placed on top of each other (m1 on top
of m2, with a small gap between them) and then dropped from height h onto
the ground. (a) What is the ratio m1/m2 for which the top ball of mass
m1 receives the largest possible fraction of the total energy of the system
after the collision? What is the height of the bounce for the top ball in this
case? (b) What is the maximum possible height of the bounce for the top
ball, and what is the mass ratio m1/m2 in that case? Consider the collision
elastic and neglect air resistance.

SOLUTION:

(a) The balls reach the ground with speed v =
√
2gh. The bottom ball

hits the ground and then collides with the top ball. The top ball receives
the largest possible fraction of the total energy if the bottom ball is at rest
after the collision. In this case, the equations expressing the conservation of
momentum and energy are

(m2 −m1)v = m1u (1)

and
(m2 +m1)v

2/2 = m1u
2/2. (2)

The speed u of the top ball after the collision and the ratio of the masses
calculated from these equations are u = 2v and m1/m2 = 1/3. The upper
ball rises to a height of hbounce = u2/2g = 4h.

(b) For the top ball, the maximum speed after collision is achieved when
m2 # m1. In this case, its speed is 3v and the height of the bounce is 9h.
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#2 : UNDERGRADUATE MECHANICS

PROBLEM: Masses m1 and m2 interact with potential energy U = k|!r1 − !r2|.
The system has angular momentum !L = "ẑ in the CM frame. Express your
answers in terms of m1, m2, k, and ".

(a) What is the radius r0 = |!r1 − !r2| of circular orbits?

(b) What is the period T of circular orbits.

(c) Suppose that the circular orbit is slightly perturbed. What is the fre-
quency of small radial oscillations about the circular orbit?

SOLUTION:

(a) This is U = kr. So Ueff = kr + !2

2µr2 . The orbits are circular at the

minimum of the effective potential, U ′
eff (r0) = 0: thus U ′

eff = k− "2/µr30 =
0, so

r0 = ("2/µk)1/3 = ("2(m1 +m2)/km1m2)
1/3.

(b) " = µr2φ̇ = µr20(2π/T ), so

T =
2π

"
µr20 = 2π

(
m1m2

(m1 +m2)"k2

)1/3

.

(c) If the circular orbit is slightly perturbed, the frequency of oscillation is

ω =
√

U ′′
eff/µ =

√
3"2/µ2r40 =

√
3(k2/µ")1/3.
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#3 : UNDERGRADUATE E+M

One end of a horizontal track of width l and negligible resistance is con-
nected to a capacitor of capacitance C charged to voltage V0 of polarity
shown in the figure. The inductance of the assembly is negligible. The sys-
tem is placed in a homogeneous vertical magnetic field B pointing into the
page. A frictionless conducting rod of mass m and resistance R is placed
perpendicular onto the track. After the capacitor is fully charged the posi-
tion of the switch S is changed from the position indicated by the full line
to the position indicated by the dotted line, and the rod starts moving. (a)
in which direction does the rod move, and why? (b) What is the maximum
velocity that the rod acquires?

SOLUTION:

When the capacitor is connected, a current I starts flowing in the rod,
which experiences the force F = BlI. The charge Q on the capacitor and
the voltage across it decrease. Meanwhile the voltage induced in the rod
increases, until the two voltages cancel each other. The rod then continues
with its maximum velocity given by

Blvmax = Qmin

C . (3)

The equation of motion of the rod is

mdv
dt = BlI = −Bl dQdt . (4)

The speed of the rod increases from zero to vmax, while the charge of the
capacitor decreases from Q0 = CV0 to Qmin. Equation (2) gives

mvmax = Bl(Q0 −Qmin). (5)

The maximum velocity can be calculated using Eq. (1) and (3)

vmax = BlCV0

m+B2l2C . (6)
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#4 : UNDERGRADUATE E+M

For the circuit shown above, find the voltages on all three capacitors

SOLUTION:
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.
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#5 : UNDERGRADUATE QUANTUM MECHANICS

Consider a system of two spin 1/2 particles that are coupled via an spin-spin
interaction W = a S1 · S2. Here a is a measure of the coupling strength.

How many states does the two particle system have, and what are their
energy levels? Show how you calculate this.

SOLUTION:

There are 4 states, three of which have S=1 and are degenerate in energy
at a!2

4 , the 4th is S=0 at an energy of −3a!2

4 . You calculate this as:

(H0 +W )|S,M >= a!2

2 [S(S + 1)− 3/2]|S,M >
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#6 : UNDERGRADUATE QUANTUM MECHANICS

A one-dimensional non-relativistic particle interacts with the potential

V (x) = λ !2

2mδ(x) (7)

where !2/(2m) has been factored out to simplify the algebra.

1. Calculate the reflection and transmission coefficients (probabilities) as
a function of the incident particle wavenumber k.

2. Calculate the scattering and bound states for λ < 0. Show that there
is a single bound state, and that it is orthogonal to the scattering
states.

SOLUTION:

1. The solution is

ψ(x) = eikx +Re−ikx, x < 0

ψ(x) = Teikx x > 0 (8)

where the incident energy is

E = !2k2

2m (9)

The Schrödinger equation is

− !2

2m
d2ψ
dx2 + V (x)ψ = Eψ

−d2ψ(x)
dx2 + λδ(x)ψ(x) = k2ψ(x) (10)

The boundary condition at x = 0 is ψ(x) is continuous, and integrating
the Schrödinger equation across x = 0 gives

dψ(x)
dx

∣∣∣
x−ε

− dψ(x)
dx

∣∣∣
x+ε

+ λψ(0) = 0 (11)

This gives

1 +R = T

ik(1−R) + λ(1 +R) = ikT (12)
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The solution is

R = − iλ
2k+iλ

T = 2k
2k+iλ (13)

The reflection and transmission probabilities are

|R|2 = λ2

4k2+λ2

T = 4k2

4k2+λ2 (14)

2. The scattering states have already been computed, since the first part
does not depend on the sign of λ. The bound states have wave func-
tions which are exponentially damped.

ψ(x) = Aeκx, x < 0

ψ(x) = Be−κx x > 0 (15)

where the energy is

E = −!2κ2

2m (16)

The same boundary conditions as before lead to

A = B

κA+ λA = −κB (17)

with solution

2κ = −λ (18)

and A = B. This is only a sensible solution for κ > 0, i.e. for λ < 0.
A and B are fixed by normalizing the bound state,

ψ(x) =
√
κe−κ|x| (19)

The bound state is unique, since there is a single solution. The overlap
of the bound state ψB with a scattering state ψk with wavenumber k
is
∫ ∞

−∞
dx ψB(x)

∗ψk(x) =

∫ 0

−∞

√
κeκx

(
1 +Re−ikx

)
+

∫ ∞

0

√
κe−κx

(
Teikx

)

=
√
κ
[
R−T
κ−ik + 1

κ

]
= 0 (20)

using Eq. (12).
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#7 : UNDERGRADUATE THERMO/STAT MECH

In a horizontal cylinder with a wedged piston (see the picture), there is a
monatomic ideal gas to the left of the piston and vacuum to the right of the
piston. The cylinder is thermally insulated and the spring (which connects
the piston with the right wall) is initially relaxed. After the piston is released
and equilibrium is reached, the volume of the gas is doubled. What is the
ratio of the final temperature to the initial temperature? What is the ratio
of the final pressure to the initial pressure? Neglect the heat capacities of
the cylinder, piston and spring.

SOLUTION:

.
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#8 : UNDERGRADUATE THERMO/STAT MECH

The rotational energies for planar rotation of a molecule are given by

En = !2

2In
2, n = 0,±1,±2, . . .

where I is the moment of inertia.

1. Compute the rotational partition function in the low and high temper-
ature limits. Keep at least the leading temperature dependent term.

2. Compute the specific heat per molecule (at constant volume) in the
low and high temperature limits

SOLUTION:

1. Let β = 1/(kBT ).

Z =
∞∑

n=−∞
e−βEn = 1 + 2

∞∑

n=1

e−λn2

λ = β!2

2I

In the low temperature limit, β → ∞ so λ → ∞. The terms are
exponentially damped with n, so

Z ≈ 1 + 2e−λ + 2e−4λ + . . .

In the high temperature limit, β $ 1, and the sum can be estimated
by an integral,

Z ≈
∫ ∞

−∞
dx e−λx2

=
√

π
λ =

√
2πI
β!2

2. The specific heat at constant volume is

CV = ∂U
∂T

∣∣
V

U = −∂ lnZ
∂β
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At low temperatures,

Z ≈ 1 + 2e−λ

lnZ ≈ 2e−λ = 2e−β!2/(2I)

U = !2

I e
−β!2/(2I) = !2

I e
−!2/(2IkBT )

CV =
(
!2

I

)2
1

2kBT 2 e
−!2/(2IkBT )

At high temperatures,

lnZ ≈ 1
2 ln

2πI
β!2

U = 1
2β = kBT

2

CV = kB
2
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#9 : UNDERGRADUATE MATH METHODS

Develop a series solution that is regular at x = 0 to the equation:

x2y′′ = xy′ + (x2 −m2)y = 0,

where m is an integer. That is, find a recursion relation that gives the terms
of the series solution.

SOLUTION:

This equation has a regular singular point at x = 0, so a solution of the
form

y = xs
∞∑

n=0

cnx
n (c0 "= 0)

is guaranteed to exist. From the differential equation we see that a two-
term recursion relation will be obtained. Substituing this solution into the
equation, the coefficient of xs is c0(s2−m2) = 0. This is the indicial equation
and its roots are s = ±m. Next the coefficient of xs+1 is c1[(s+1)2−m2] = 0.
Thus c1 = 0, unless m = 1/2, which was not allowed. So there are no even
terms in the expansion. Thus we write

y = x±m(c0 + c2x
2 + c4x

4 · · · )

and find the recursion relation:

cn+2

cn
=

−1

(s+ n+ 2)2 −m2
.
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#10 : UNDERGRADUATE EXP-GENERAL

(a) A telescope with a primary mirror with a diameter of 20m records 314
photons / second from a star. Assume that no photons are lost in our
atmosphere and that the telescope plus detector system is 1% efficient. What
is the flux of photons/s/m2?

b) What is the energy flux in W/m2 if the effective wavelength is 500 nm
and h = 6.63× 10−34 Js?

c) You observe this star for a year and see that it inscribes a small circle
with diameter 1/3600 degrees relative to the fainter and much more distant
stars. The circular motions repeats with exactly one year period. What is
the distance to this star? You need to know that the Earth is 150 million
km from the sun.

d) How much energy does this star emit in all directions per second into the
waveband that was detected (in part a)?

SOLUTION: a) The mirror area is π102 m, and the system has an effective
area of πm. The photon flux is then 314/3.14 = 100 photons/s/m2.

b) Energy per photon E=hc/λ = 6.63 × 10−343× 108/500× 10−9 = 3.98×
10−19J . The energy flux is then 100E = 3.98 × 10−17 W/s

c) This parallactic motion is caused by the Earth’s orbit of the sun, hence the
exact one year period. The circular motion has a radius of 1/7200 degrees
= 2.42× 10−6 radians. This is the apex angle of a skinny triangle with base
1.5× 1011m the 2 long sides equal to the distance to the star. The distance
is then the base/angle d = 6.19 × 1016m.

d) Assume the star emits isotropically. Then energy emitted = flux×4πd2 =
1.92 × 1018 W.
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#11 : GRADUATE MECHANICS

PROBLEM: For a one dimensional system with Hamiltonian H = 1
2 (p

2− q−2):

(a) Show that D = αpq − Ht is a constant of the motion for a particular
value of the constant α, which you should determine.

(b) Suppose that at time t = 0, p = 0 and q = 1. Find p(t) and q(t) for
t > 0.

SOLUTION:

(a)
dD

dt
= [D,H] +

∂D

∂t
= [αpq,H]−H = α(p2 − q−2)−H,

which vanishes for α = 1
2 , so D = 1

2pq −Ht is a constant.

(b) At t = 0, evaluate H = −1
2 and D = 0. These are both constants of the

motion, so
q−2 − p2 = 1, pq = −t.

These give (for 0 ≤ t ≤ 1)

q =
√
1− t2, p = −

t√
1− t2

.
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#12 : GRADUATE MECHANICS (Jenkins)

A circular cone of height h and angle 2α rolls without slipping inside a fixed
cone of angle 2β, where α < β. The axis of the cone rotates about the axis of
the outer cone with constant angular speed Ω. (a) Find the angular velocity
of the cone, and show that ψ̇ is a constant (φ, θ,ψ are the usual Euler angles
for the orientation of a rigid body). (b) Find the kinetic energy of the cone.
(The moments of inertia of a circular cone of radius R and height h about
its tip are I1 = I2 =

3
5M(14R

2 + h2) and I3 =
3
10MR2.)

SOLUTION: Take the space fixed axes to be the symmetry axis of the outer
cone x̂3, and its two perpendicular directions x̂1,2. The body fixed axes are
the symmetry axis of the cone x̂′3 and x̂′1,2.

θ = β − α = constant ⇒ θ̇ = 0

φ̇ = Ω

&ω = φ̇ x̂3 + θ̇ n̂+ ψ̇ x̂′3
= Ω x̂3 + ψ̇ x̂′3
= Ω

[
sin(β − α) x̂′2 + cos(β − α) x̂′3

]
+ ψ̇ x̂′3

= Ω sin(β − α) x̂′2 +
[
Ω cos(β − α) + ψ̇

]
x̂′3

The instantaneous axis of rotation of the cone is along the line of contact of
the inner and outer cones, so

&ω = A
[
− sinα x̂′2 + cosα x̂′3

]

−A sinα = Ω sin(β − α),

A cosα = Ω cos(β − α) + ψ̇,

⇒ A = −
Ω sin(β − α)

sinα

⇒ ψ̇ = −Ω [sin(β − α) cot α+ cos(β − α)] = −Ω
(
sinβ

sinα

)
= constant
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The equation

|ψ̇| = Ω

(
sin β

sinα

)

also is easily obtained from the constraint of rolling without slipping,

R ψ̇ = φ̇

[(
h

cosα

)
sin β

]
,

with R = h tanα.

T =
1

2
I2ω

2
2 +

1

2
I3ω

2
3,

R

h
= tanα,

I2 =
3

5
Mh2

(
1

4
tan2 α+ 1

)
=

3

20
Mh2

(
tan2 α+ 4

)
,

I3 =
3

10
Mh2 tan2 α,

ω2 = Ω sin(β − α),

ω3 = −Ω sin(β − α) cotα,

T =
3

40
Mh2Ω2 sin2(β − α)

[(
tan2 α+ 4

)
+ 2 tan2 α cot2 α

]

=
3

40
Mh2Ω2 sin2(β − α)

[
tan2 α+ 6

]
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#13 : GRADUATE E+M

Consider a uniform external magnetic field with the magnetic inductance
!B = Bẑ along the z-direction. Now we put a superconducting ball of radius
R at the origin. The superconductor is a perfect diamagnet, which means
that the B-field inside the superconductor vanishes as !Binside = 0. Intro-
ducing the superconducting ball changes the distribution of !B outside the
ball. Find !B(r, θ,φ) for all r > R.

Hint: the relation between !B and the magnetic field strength !H and the
magnetic moment density !M is !B = !H + 4π !M . We assume that ∇ · !M = 0
inside the superconductor. You can use the method of the magnetic scalar
potential !H(!r) = −∇W (!r) to solve for the distribution of the magnetic
inductance !B(!r) outside the superconducting ball. You need to determine
the correct boundary conditions.

Hint: the general solution to the Laplace equation in spherical coordinates
(r, θ,φ) with axial symmetry can be expressed as

W (r, θ,φ) =
+∞∑

l=0

(alr
l + bl

rl+1 )Pl(cos θ). (21)

SOLUTION:

1) Outside the sphere, i.e., r > R, M = 0, !H = !B, and thus ∇· !H = 0, which
means that −∇2W (r, θ,φ) = 0. In this region, we know that !B(!r) = B0ẑ as
r → +∞. Thus we have

Wout(r, θ,φ) = a1r cos θ +
+∞∑

l=0

bl
rl+1Pl(cos θ). (22)

!B(!r) → B0ẑ as r → +∞ shows that a1 = −B0.

2) Inside the sphere, i.e. r < R. !H = −4π !M , again∇· !H = −∇2W (r, θ,φ) =
0. In this region, we have

Win(r, θ,φ) =
+∞∑

l=0

alr
lPl(cos θ). (23)

3) The boundary condition: W should be continuous at r = R, thus

Win(R, θ) = Wout(R, θ), (24)
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which shows that

alR
l = bl

Rl+1 (25)

for l != 1. and

a1R = b1
R2 −B0R. (26)

From the continuity of the radial component of !B, we have !B · êr = 0 at
r = R outside the sphere, which means

∂Wout(r,θ)
∂r |r=R = 0. (27)

From Eq. 27, we arrive at

−B0P1(cos θ)−
+∞∑

l=0

(l + 1) bl
Rl+2Pl(cos θ) = 0, (28)

which shows that for l != 1, we have

bl = 0, (29)

and thus al = 0 for l != 1 according to Eq. 25. For l = 1, we have

B0 − 2 b1
R3 = 0, (30)

thus we have b1 = −1
2B0R3 and a1 = −3

2B0. Thus the

Wout = −B0r cos θ − B0

2r2R
3 cos θ

(31)

= −B0z − B0R3z
2r3 . (32)

The !B field at r > R is

!B = −∇W = B0ẑ +
B0R3

2 ( rẑ−3zêr
r4 )

(33)

= B0ẑ +B0
R3

2r3 (ẑ − 3 cos θêr) (34)

Because êr = cos θẑ + sin θ cosφx̂+ sin θ sinφŷ, we have

!B(!r) = B0ẑ +B0
R3

2r3

{
(1− 3 cos2 θ)ẑ − 3

2 sin 2θ(cosφx̂+ sinφŷ)
}
,

(35)

(36)

for r > R.
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#14 : GRADUATE E+M

A charge density ρ0 is placed at time t = 0 in a small region in the interior
of a homogeneous charge-neutral material that has electrical conductivity
σ.

(a) Derive an expression for the time evolution of the charge density in that
region, ρc(t), with ρc(0) = ρ0. Hint: use a continuity equation.

(b) Estimate how long it will take (in seconds) for the charge density to de-
crease to 1/1000 of its initial value if the material is (i) copper with conduc-
tivity σ = 1/(2µΩcm) and (ii) quartz with conductivity σ = 1/(1024µΩcm).

Use ε0 = 8.85× 10−12C2/Nm2.

SOLUTION:

(a) Use $J = σ $E, $∇ · $E = ρc/ε0 and the continuity equation

$∇ · $J + ∂ρc
∂t = 0 (37)

to get
∂ρc
∂t = − σ

ε0
ρc (38)

hence
ρc(t) = ρ0e

−(σ/ε0)t ≡ ρ0e
−t/τ (39)

with
τ = ε0/σ (40)

(b) For t = 7τ , ρc(t) ∼ ρ0/1000. We have, with ε0 = 8.85 × 10−12C2/Nm2

σCu = 1/(2µΩcm) = 1/(2 × 10−8Ωm) (41)

tCu = 7τCu = 7ε0/σCu = 1.24 × 10−18s (42)

σquartz = 1/(1024µΩcm) = 1/(1016Ωm) (43)

tquartz = 7τquartz = 7ε0/σquartz = 6.2× 105s (44)
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#15 : GRADUATE QUANTUM MECHANICS

Consider two spin-12 particles interacting through a Heisenberg Hamiltonian

H = J !S1 · !S2, where !S1,2 =
1
2!σ1,2 and !σ1,2 are Pauli matrices for particles 1

and 2, respectively.

(a) Solve for the eigenenergy of each eigenstate, and express each eigenstate
in the basis of eigenstates of σ1,z and σ2,z.

(b) Consider an initial two-spin state at t = 0 |Ψ(t = 0)〉 = | ↑〉1 ⊗ | ↓〉2,
where | ↑〉 and | ↓〉 are σz-eigenstates with eigenvalues 1 and −1, respectively.
Calculate the time evolution of the expectation value of S1,z of the first
particle.

SOLUTION: (a) There are four states

|φ1〉 = | ↑〉1 ⊗ | ↑〉2
|φ−1〉 = | ↓〉1 ⊗ | ↓〉2
|φ0〉 = | ↑〉1 ⊗ | ↓〉2
|φ′

0〉 = | ↓〉1 ⊗ | ↑〉2. (45)

H = J
2 (S1+S2− + S1−S2+) + JS1,zS2,z.

S+| ↑〉 = 0, S+| ↓〉 = | ↑〉, S−| ↑〉 = | ↓〉, S−| ↓〉 = 0.

It is straightforward to show that H|φ±1〉 = J
4 |φ±1〉.

H|φ0〉 = −J
4 |φ0〉+ J

2 |φ
′
0〉

(46)

H|φ′
0〉 = −J

4 |φ
′
0〉+ J

2 |φ0〉. (47)

After diagonalization, we have the eigenstates |φ±
0 〉 =

1√
2
(|φ0〉±|φ′

0〉). Since
H|φ+

0 〉 =
J
4 |φ

+
0 〉 and H|φ−

0 〉 = −3J
4 |φ−

0 〉, the eigenvalues are J/4 and −3J/4
respectively.

(b) The intital state can be expressed as
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|Ψ(t = 0)〉 = 1√
2
(|φ+

0 〉+ |φ−
0 〉), thus its time evolution is

|Ψ(t)〉 = 1√
2
e−i

J
4 t(|φ+

0 〉+ eiJt|φ−
0 〉) (48)

= 1
2e

−i J4 t
{
(1 + eiJt)| ↑〉1 ⊗ | ↓〉2) + (1− eiJt)| ↓〉1 ⊗ | ↑〉2)

}

〈S1,z(t)〉 = 1
4(|1 + eiJt|2 − |1− eiJt|2)× 1

2 = 1
2 cos Jt.
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#16 : GRADUATE QUANTUM MECHANICS

Consider scattering of two relativistic spin 1/2 particles, e.g. electron positron,
via a JPC = 1−− resonance, e.g. the Y(4S) resonance, that decays into two
spin 0 particles, e.g. two B mesons. What is the angular distribution of the
outgoing spin 0 particles with regard to the axis of the incoming spin 1/2
particles in the center of mass frame of the spin 1 resonance assuming that
total angular momentum (spin and orbital) is conserved.

SOLUTION: Two possibilities due to helicity conservation along the beam
axis. e+Le

−
R → Υ(4S) → B+B− and e+Le

−
R → Υ(4S) → B+B−. In the two

cases, JZ = −1 and +1 respectively in the initial state. The final state B
mesons have no spin, and thus JZ = 0. The momentum distribution is thus
given by the two d-functions: d0−1 and d0+1, both of which are ∝ sinθ. The
total cross section is then ∝ |d0−1|2 + |d0+1|2 ∝ sin2θ. Here θ is the angle
with respect to the beam axis.
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#17 : GRADUATE STAT MECH (Jenkins)

Consider a relativistic gas of N indistinguishable massless particles. Assume
that the particles are classical, not quantum, particles.

(a) Calculate the canonical partition function Z(T, V,N).

(b) Find the Helmholtz free energy F (T, V,N).

(c) Determine the pressure p, the entropy S and the chemical potential µ
for this relativistic gas.

(d) Determine the energy U(T, V,N) and the heat capacity at constant
volume CV .

Hint: ∫
dx x2 e−x = Γ(3)

SOLUTION: (a)

H(qi, pi) =
N∑

i=1

|!pi|c

Z(T, V,N) =
1

N ! h3N

∏

i

∫
d3qid

3pie
−βH(qi,pi) =

1

N ! h3N
V N

(∫
d3p e−β|p|c

)N

∫
d3p e−β|p|c = 4π

∫ ∞

0
dp p2e−βcp =

4π

(βc)3
Γ(3) =

8π

(βc)3

Z(T, V,N) =
1

N ! h3N

(
8πV

(βc)3

)N

=
1

N !

(

8πV

(
kT

hc

)3
)N

(b)

F (T, V,N) = −kT lnZ = −kT

[

N ln

(

8πV

(
kT

hc

)3
)

− lnN !

]

F (T, V,N) = −NkT

[

1 + ln

(
8πV

N

(
kT

hc

)3
)]



CODE NUMBER: ————– SCORE: ———— 24

(c)

p = −
(
∂F

∂V

)

T,N

=
NkT

V

S = −
(
∂F

∂T

)

V,N

= Nk

[

4 + ln

(
8πV

N

(
kT

hc

)3
)]

µ =

(
∂F

∂N

)

T,V

= −kT ln

(
8πV

N

(
kT

hc

)3
)

(d)
U(T, V,N) = F + TS = 3NkT

CV =

(
∂U

∂T

)

V

= 3Nk
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#18 : GRADUATE STAT MECH

The figure shows the Fermi function f(ε) (full line) for electrons in a metal at
temperature kBT << εF as function of energy ε, with εF the Fermi energy,
and a dotted line that is tangent to the Fermi function at the chemical
potential µ. The electrons are assumed to be non-interacting. Assume
at this low temperature the chemical potential µ ∼ εF is independent of
temperature. Taking as an approximation to the true Fermi function the
horizontal portions joined by the dotted line, derive an expression for the
electronic heat capacity of this metal. Assume the density of states in energy
g(ε) is a constant g, independent of energy. Proceed as follows:

(a) Find the function describing the dotted line and the points where the
dotted line intersects the horizontal lines (values 1 and 0).

(b) Compute the energy of the electrons in the region of energy where f(ε) =
1.

(c) Compute the energy of the electrons in the region where f(ε) is given by
the dotted line.

(d) Compute the heat capacity. How does it compare to the correct result
for the low temperature heat capacity of a metal?

SOLUTION:
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#19 : GRADUATE MATH METHODS

Using contour integration find the value of

∫ ∞

0

ln(x2 + 1)

x2 + 1
dx.

Hint: ln(x2 + 1) = ln(i− x) + ln(i+ x)− iπ.

SOLUTION: Consider

I =

∮
ln(z + i)

z2 + 1
dz

around a contour in the upper half plane going from (−R, 0) to (R, 0) along
the x-axis and returning along a semicircle Γ of radius R in the upper half
plane. The only pole is simple at z = i and has residue ln(2i)

2i . Thus by the
residue theorem I = 2πi ln(2i)/(2i) = π ln(2) + iπ2/2.

Now write the contour integral in three parts:

I =

∫ 0

−R

ln(x+ i)

x2 + 1
dx+

∫ R

0

ln(x+ i)

x2 + 1
dx+

∫

Γ

ln(z + i)

z2 + 1
dz.

Replacing x by −x in the first integral, the first two integrals can be com-
bined using the Hint:

I =

∫ R

0

ln(x2 + 1)

x2 + 1
dx+

∫ R

0

iπ

(x2 + 1)
dx+

∫

Γ

ln(z + i)

z2 + 1
dz.

Finally take the limit R → ∞ and show that the contribution from the Γ
path is zero. Then equating just the real parts of the residue solution, one
gets ∫ ∞

0

ln(x2 + 1)

x2 + 1
dx = π ln 2.
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#20 : GRADUATE EXP-GENERAL

An emission line is observed over a certain range of wavelengths in a spec-
trum. We suspect that an emission line is present in three adjacent pixels
that contain 62, 71 and 69 photons. The emission line is observed on top of
a background of with the following number of photons per pixel on either
side of the emission line and away from the pixels where the emission is
suspected: 52, 48, 60, 42, 45, 59, 51, 61, 43.

(i) What is the mean background per pixel and the uncertainty in this value?

(ii) What is the statistical significance of the emission line? Examine the
pixels individually.

(iii) What is the statistical significance of the emission line if you examine
the pixels together?

(iv) In the above we assume that we know the pixels in which the emission
line might be found. What is the significance of the emission line if instead
we know the expected width but not the position of the line prior to collect-
ing the data? Assume that the spectrum contained 1024 pixels and the line
could lie anywhere in the spectrum.

It might help to know that for a normal distribution the fraction of the area
lying between −nσ and +nσ is 68.27% for n = 1; 95.45% for n = 2; 99.73%
for n = 3; and 99.9937% for n = 4.

SOLUTION:

(i) Assume the background is constant across the pixels and that the fluctu-
ations are due to Poisson statistics. Mean background per pixel is the sum of
the values/9, or 461/9 = 51.2. The standard deviation of the 9 background
values is 7.4, which is consistent with the assumption of that the distribution
is Poisson, since the standard deviation of a Poisson distribution is

√
mean

or
√
51.2 = 7.2. The uncertainty in the mean background per pixel is then√

sum/9 = 21.5/9 = 2.4, or 7.4/
√
9 because the background is averaged

over 9 pixels.

(ii) Is there an excess over backgound in any of the 3 pixels? In the central
pixel, the excess is 71 − 51.2 = 19.8. We want to know the Prob(≥ 71
given mean = 51), under the assumption (null hypothesis) that there is no
excess, only random fluctuation in the background. We could calculate this
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using the Poisson distribution. Since 71 >> 10, we can use the Gaussian
approximation with mean 51.2 and standard deviation 7.2. 19.8 is then 2.75
sigma above the mean, which is expected less than 5% of the time. The
excess in each of the other two pixels is less significant: 1.5 sigma and 2.5
sigma. It is customary (with no justification) to call results > 2σ significant.

(iii) In 3 pixels we expect 153.6 photons and the uncertainty in this expected
value (not in the actual number of background photons in those 3 pixels
that is not known) is

√
sum/3 = 7.2. The total counts in the 3 pixels is 202

photons. The excess is 48.4. We now want Prob(≥ 202 given mean 153.6),
where 1-standard deviation is

√
153.6 = 12.4, and 48.4 is then 3.9 sigma.

We do not take
√
202 because there is no uncertainty in the counted number

of photons.

(iv) This is now an example of a posteriori statistics, an example of which
was discussed in the Physics Colloquium on HLC and the Higgs boson in
March 2012.

First let us examine pixel by pixel, and assume each pixel is independent.
We need to find Prob(≥ one excess > 2.7σ, given 1024 trials). We recall
that we expect one excess > 2σ in 2.1% of trials (with another 2.1% giving
deficits > 2σ), and > 3σ in 0.13% of trials. We then expect about 1.3 events
> 3σ in 1024 independent pixels.

Next let us look at the 3-pixel 3.9− σ excess. The probability of one excess
> 4σ in one pixel is 0.000031. There are about 341 independent places where
3-pixels can be located, so the chance of one 3-pixel region somewhere in
the spectum exceeding 3.9σ is about 1%, which we call significant.


