
INSTRUCTIONS

PART I : PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. (E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks, ) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.
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#1 : UNDERGRADUATE MECHANICS

PROBLEM: The radial geodesic equation for an orbit around a black hole is
given by:

m

(
dr

dτ

)2

=
E2

mc2
−

(
1 −

rS

r

) (
mc2 +

l2

mr2

)
,

where rS = 2GM/c2 is the Schwarzschild radius, r is the radial coordinate,
τ is the proper time along the orbit, E is the conserved energy along the
orbit, and l is the conserved angular momentum.

(a) Write this equation using an effective potential Veff .
(b) Using this Veff find the circular orbits around the black hole.
(c) The larger orbit is stable and the smaller one is unstable. Using this
information find the condition on l for the smallest stable orbit.
(d) Find the radius of this smallest stable orbit. Express your answer in
terms of rS alone.

SOLUTION: The solution is hand written.

#2 : UNDERGRADUATE MECHANICS

PROBLEM: A 1.2-kg block rests on a frictionless surface and is attached to
a horizontal spring of constant k = 23 N/m (see Figure). The block is
oscillating with amplitude A1 = 10 cm and with phase constant φ1 = −π/2.
A block of mass 0.80 kg is moving from the right at 1.7 m/s. It strikes
the first block when the latter is at the rightmost point in its oscillation.
The collision is perfectly inelastic. Determine the frequency, amplitude, and
phase constant (relative to the original t=0) of the resulting motion.

SOLUTION:

The simple harmonic motion with just the first block on the spring can be
described by

x(t) = A1 cos(ω1t + φ1) (1)

with the given amplitude A1 and phase constant φ1, where the angular
frequency ω1 =

√
k/m1 =

√
(23N/m)/(1.2kg) = 4.38s−1.

This equation holds up to the time of the collision, i.e., for t < tc. Since
for the rightmost point of oscillation, cos(ω1tc + φ1) = 1, we find that tc =
(π/2)/ω1.
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Collision is perfectly inelastic, so the two blocks stick together. The simple
harmonic motion after the collision is described by

x(t) = A cos(ωt + φ) (2)

for t > tc, where ω =
√

k/(m1 + m2) = 3.39s−1 is the angular frequency
when both blocks oscillate on the spring. The frequency, as asked in the
problem, is

f = ω/(2π) = 0.540Hz.

It follows from Eq.(2) that

v(t) = −ωA sin(ωt + φ) (3)

The amplitude A and phase constant φ of the resulting motion can be de-
termined from Eqs.(2) and (3) evaluated just after the collision, essentially
at tc, if we assume that the collision takes place almost instantaneously.
Conservation of momentum during the collision can then be applied.

Just after the collision, x(tc) = 10 cm (given) and v(tc) = (m1v1+m2v2)/(m1+
m2), where just before the collision, v1 = 0 (given m1 at rightmost point of
its original motion) and v2 = -1.7 m/s (also given). Numerically,

v(tc) = (−1.7m/s)0.8kg/(0.8kg + 1.2kg) = −68cm/s.

Solving Eqs.(2) and (3) for A (using sin2 x + cos2 x = 1), we find

A =
√

x(tc)2 + [−v(tc)/ω]2 =
√

(10cm)2 + (68cm/3.39)2 = 22.4cm

Solving for φ (using sin x/ cos x = tan x), we find

φ = tan−1[−v(tc)/(ωx(tc))] − ωtc,

φ = tan−1[68/(3.39 × 10)] − 69.7◦ = −6.20◦ = −0.108radians.

#3 : UNDERGRADUATE E&M

PROBLEM: 1) An inductor and capacitor are in series forming an L-C circuit
consisting of a capacitor with C = 3.4 × 10−6 F and an inductor with
L = 0.080H. At t = 0 the capacitor has charge 5.4× 10−6C and the current
in the inductor is zero. The circuit oscillates at its resonant frequency.

(a) What is the resonant frequency in Hz?
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(b) How long after t = 0 will the current in the circuit be maximum?

(c) What is the maximum amount of energy that the solenoid will store after
closing the switch?

(d) What will be this maximum current?

SOLUTION:

(a) What is the resonant frequency in Hz?

From Kirchoff’s voltage law we have for a 2-element series circuit:

LdI/dt + Q/C = 0 implying Ld2I/dt2 + 1/CI = 0. With a sinusoidal,
oscillatory current of the form I = Iocosωt, we find ω2LI = I/C.

So, ω = 1/
√

LC and since ν = ω/2π we get ν = (2π
√

LC)−1 = 304 Hz.

(b) The current in the circuit be maximum one-quarter of a period after it is
zero. Since ν = 304Hz, T = 0.0033s, and one-quarter period is 8.2 × 10−4s.

(c) What is the maximum amount of energy that the solenoid will store
at any point? Assuming no dissipation, the energy is exchanged between
capacitor and inductor and 1/2CV 2 = 1/2LI2.

V can be obtained from Q/C = V = 5.4 × 10−6C/3.4 × 10−6 = 1.6V.
E = 4.4 × 10−6 J

(d) What will be the maximum current flowing in the circuit?

From above, energy balance we have I = V
√

C/L = V · 0.007Ω−1. With
V = 1.6V we obtain I = 1.0 × 10−2A.

#4 : UNDERGRADUATE E&M

PROBLEM: A metallic cylinder rotates with angular velocity ω about its axis.
The cylinder is in a homogeneous magnetic field B parallel to its axis. Find
the charge distribution inside the cylinder. Consider both magnetic field
directions.

SOLUTION:

For the free electron moving on a circular track with the cylinder, the equa-
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tion of motion is
eE ± erωB = mrω2,

where e is the electron charge, m is its mass, r is the distance from the axis
of the rotation, E is the electrostatic field produced in the cylinder by the
charge distribution. The ± sign shows that the Lorents force can be directed
inwards or outwards, depending on the magnetic field direction. From this
we obtain

E =
(

mω2

e ± ωB
)

r = Kr.

Consider a thin cylindrical shell at distance r from the axis. Electric flux
2πrLE(r) enters the shell and a flux 2π(r + δr)LE(r + δr) exits it, where L
is the cylinder length. According to Gauss’s law

2π(r + δr)LE(r + δr) − 2πrLE(r) = 1
ε0

ρ(r)2πrLδr,

where ρ is the electric charge density in the cylinder. Entering E(r) = Kr
we obtain

2π(r + δr)LK(r + δr) − 2πrLKr = 1
ε0

ρ(r)2πrLδr,

From this we obtain

ρ(r) = 2Kε0 = 2
(

mω2

e ± ωB
)

ε0.

#5 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Consider a particle of mass m and charge Q in a simple 1-D har-
monic oscillator potential with a constant electric field E in the x direction.
(a) Show that there is no first order perturbation theory correction to the
energy of the simple harmonic oscillator states, (n + 1/2)!ω.
(b) Using second order perturbation theory show that the energy shift is
−Q2E2/(2mω2), independent of n.

SOLUTION: The solution is hand written.
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#6 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: A particle of mass m moves in d-dimensional space with position
vector )r = (x1, x2, ..., xd). Its potential energy is

V (r) = 1
2kr2 (4)

with
r2 = x2

1 + x2
2 + ... + x2

d (5)

and k a constant.

(a) As in the Bohr atom, assume the particle moves in a circular orbit
and find the radii and energies of the allowed orbits assuming the angular
momentum is quantized according to L = n!. Give your answers as function
of m and ω =

√
k/m

(b) Give the exact energies of the particle resulting from solution of the
Schrodinger equation and compare with the result in (a).

(c) Give the ground state wave function of the particle.

(d) Find the most probable value of r for the particle in the ground state.
Determine for which (if any) value(s) of the space dimensionality d does the
most probable value of r coincide with the radius of the lowest Bohr orbit
found in (a).

Hint 1: the ground state wavefunction for the one-dimensional harmonic
oscillator is

Ψ0(x) = (mω
π!

)1/4e−
mω
2!

x2
(6)

Hint 2: the volume of a d-dimensional sphere of radius R is proportional to
Rd.

SOLUTION: The solution is hand written.

#7 :UNDERGRADUATE STAT MECH

PROBLEM: Consider a 2-level system with energy states ε and ε + δ (δ ≥ 0).
Compute the partition function and the free energy of the system. Derive an
expression for the specific heat C(T ). Obtain the low-T and high-T limits
of this expression. Make a sketch of your result.

SOLUTION:
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(a) Partition function:

Z =
∑

j

e−βε = e−βε + e−β(ε+δ)

where β = 1/kBT .

Free energy:
F = −kBT ln Z

F = −kBT ln(e−βε + e−β(ε+δ))

(b) To calculate the specific heat, we first need to compute the energy:

E = −∂ lnZ
∂β = εe−βε+(ε+δ)e−β(ε+δ)

e−βε+e−β(ε+δ) = ε + δ
1+eδ/kBT

The specific heat is then

C(T ) = ∂E
∂T = δ2e−δ/kBT

kBT 2(1+e−δ/kBT )2

Expressions for the low-T and the high-T limits of the specific heat are
shown in the figure.

#8 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: In Debye’s theory of solid, a crystal of N atoms is described by a
set of 3N harmonic oscillators, whose angular frequencies ω are distributed
according to D(ω) = Aω2 for ω < ωD and D(ω) = 0 for ω > ωD.

(i) Find the dependence of the average thermal energy E on the temper-
ature T to the leading order; find also the specific heat C(T ) to this
order in T .

(ii) Again to leading order in T , find the entropy S(T ) and express it in
terms of C(T ).

SOLUTION:
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(i) The average thermal energy is given by

E =

∫
dωD(ω)

!ω

e!ω/kT − 1

= A

∫ ωD

0
dω

!ω3

e!ω/kT − 1

= A · (kT )4/!
3

∫
!ωD/kT

0
dx

x3

ex − 1

To leading order in T , !ωD/kT → ∞ and the integral becomes a
number. Thus E(T ) ∝ T 4 and the specific heat is

C(T ) = ∂E/∂T ∝ T 3.

(ii) The entropy is given by

S =

∫ T

0

dQ

T
=

∫ T

0

C(T )dT

T
.

Let C(T ) = BT 3, then

S =

∫ T

0
BT 2dT =

1

3
BT 3 = C(T )/3.

#9 : UNDERGRADUATE MATH

PROBLEM: A point force f is applied normally to the center of a circular plate
of radius R. The deflection h = h(r) of the plate satisfies the biharmonic
equation

D∆2h = fδ(r) , ∆ ≡ d2

dr2 + 1
r

d
dr (2D Laplacian) ,

where D is the bending elastic modulus. Find h(0) assuming that the edge
of the plate is clamped: h(R) = h′(R) = 0.

Hint : seek the solution in the form of series h(r) =
∑

cmnrm lnn r where
m ≥ 0 and n = 0 or 1.

SOLUTION:
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Everywhere except the point r = 0 the right-hand side of the biharmonic
equation vanishes, which means

h(r) = a + br2 + cr2 ln r , a, b, c = const .

Note that another possible term of the series — ln r — is not physically
allowed because it diverges at r = 0. The boundary conditions further
restrict h(r) to the form

h(r) = c
[

1
2(R2 − r2) − r2 ln R

r

]
.

To determine c, we integrate both sides of the biharmonic equation over the
area. Applying Gauss’ theorem, we get

f
D =

∫
d2r∆2h =

∫

r=R

dl d
dr ∆h = 2πR 4c

R = 8πc .

This gives c = f/(8πD), and so

h(0) = fR2/(16πD) .

#10 : UNDERGRADUATE GENERAL

PROBLEM: Resonant Cavities and Radiation

An electromagnetic standing wave with mode number n = 1 is resonating in
a metallic empty cavity. The nodal plane – the plane containing the nodes
of the E field – and the closest nodal planes of the B field are separated by
±0.87 m.

(a) Find the length of the resonating cavity. (b) What is the frequency of
the electromagnetic wave and what region of the electromagnetic spectrum
does it reside in?

Next, consider a laser beam emanating from a laser cavity which has a
wavelength of 633 nm and a power of 0.500 mW spread uniformly over a
circular area 1.20 mm in diameter. This beam falls perpendicularly on a
perfectly reflecting mirror having twice the diameter of the laser beam and
a mass of 1.50 milligrams.

(c) What are the amplitudes of the electric (in Coulombs/meter) and mag-
netic fields (in Tesla) in this laser beam?
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(d) What acceleration does the laser beam give to the mirror?

Finally, consider a perfectly black sphere 18.0 cm in diameter is at a tem-
perature of 215◦C.

(e) If all the photons are radiated at the wavelength where the sphere radi-
ates most strongly how many photons would the sphere emit each second?

(Note: εo = 8.9×10−12Coulombs/N/m2, h = 6.626×10−34J ·s, the constant
in Wiens displacement law is 0.00290m · K, and c = 2.99 × 108m/s , and
the Stefan-Boltzmann constant is 5.67 × 10−8W/m2 · K4.)

SOLUTION: (a) The nodal plane of the fundamental n=1 mode resides halfway
between the ends of the cavity, since the boundary conditions on the stand-
ing wave and transverse electric field require it to vanish at the walls of the
cavity (where the B field’s nodal planes lie. Therefore, L = 1.74m.

(b) L = λ/2 and ν = c/λ = 2.99 × 108m/s/2× 1.74m = 8.6× 107 Hz, or 86
MHz, which is in the (FM) radio regime of the electromagnetic spectrum.

(c) The rate of energy transport per unit area, the Poynting vector S, is
perpendicular to both E and B and in the direction of propagation of the
wave. A condition of the wave solution for a plane wave is Bmax = Emax/c

so that the average intensity for a plane wave can be written S = εoc
E2

2
since the average of the square of a sinusoidal function over a whole number
of periods is 1/2.

Power/unit area = 0.0005W/(0.00062m2π) = 442 × W/m2

Emax =
√

2S/cεo

Emax = 577N/C,Bmax = Emax/c = 1.92µT.

(d) S = Pc where the pressure P = F/area = ma/A. P = 442Wm−2/2.99×
108 = 1.47 × 10−6N/m2. F = P · Area,A = 1.1 × 10−6m2, is the area of
the laser spot, implying the acceleration of the paper is F/mass = 1.6 ×
10−12N/1.5 × 10−6kg = 1.1 × 10−6m/s2

(e) The Wien law reads: λmaxT = 0.00290m·K, then λmax converts to
frequency via ν = c/λand Energy = hν.
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λ = 5.94 × 10−6m, ν = 50.3 × 1012Hz, hν = 334.2 × 10−22J.

Stefan Boltzmann Law is S = σBT 4 = power/area = Energy/time/area =
Number of photons/sec × energy per photon/area. Temperature must be
in Kelvin. Area = 4π(D/2)2. So, power P = 325W and if each photon has
the same wavelength N/s = 9.79 × 1021 photons/sec.

#11 :GRADUATE MECHANICS

PROBLEM: A particle moves along the curve

x = .(2φ + sin 2φ), y = .(1 − cos 2φ),

in a uniform gravitational field in the negative y direction. Find the oscilla-
tion period using action angle variables. (Assume that the maximum value
of φ < π/2).

SOLUTION:

This problem is recycled from the Fall 2001 qual. The solution can be found
there, on the web.

#12 :GRADUATE MECHANICS

PROBLEM: A long straignt grounded wire with radius a carries current I.
An electron is emitted from the wire with velocity v0 ≈ c in the (cylindri-
cal) radial direction. Neglecting radiation and image charge effects in the
grounded wire, find the maximum distance R that the electron travels from
the wire before returning. Assume the motion can be treated with classical
mechanics.

SOLUTION: The relevant, relativistic lagrangian is

L = −mc2
√

1 − v2/c2 +
q

c
)v · )A

= −mc2
√

1 − c−2(ṙ2 + r2θ̇2 + ż2 +
2qI

c2
ln(

r0

r
).

It’s independent of t, θ, and z, so energy, angular momentum, and pz are
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conserved. These imply that

R = R0 exp(
γmc2v0

2qI
).

#13 :GRADUATE E&M

PROBLEM: A long, hollow cylindrical conducting shell with mass m per unit
length, inner radius r1, outer radius r2, is placed with its axis of symmetry
aligned with a uniform magnetic field B. The shell is set spinning on its
axis, on a frictionless bearing, with a rotation frequency ω * c/r1. The
magnetic field is then turned off. Find the new rotation frequency ω′.

SOLUTION: In the presence of a magnetic field there is an induced (Hall-
effect) electric field in the conductor given by )E + 1

c)v × )B = 0, which yields
)E = −1

cωrBr̂. Considering a unit length, the total angular momentum is
conserved:

pθ = Iω +

∫ r2

r1

2πrdr
rAθ

c
ρ(r),

where ρ(r) is the induced charged density that creates the electric field
(including the surface charge density), I = 1

2m(r2
2 + r2

1) is the moment of
inertia of the shell, and Aθ = Br/2. Inside the conductor, ρ(r) is determined
via Poisson’s equation,

4πρ =
1

r

∂

∂r
rEr = −2ωB/c.

On the inner and outer surfaces respectively the surface charge densities are

4πσ1 = −Er|r=r1 =
ωr1B

c
, 4πσ2 = Er|r=r2 = −

ωr2B

c
.

The conserved angular momentum is then

ω′ = ω

(
1 +

B2

4mc2
(r2

2 − r2
1)

)
.

#14 :GRADUATE E&M

PROBLEM: Two halves of a spherical metallic shell of radius R are separated
by a small insulating gap. The alternating voltage V cos ωt is applied to
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the top half and −V cos ωt to the bottom half. Suppose that ω * c/R.
Compute the amplitude of the oscillating dipole moment of the system and
the time-average power that it radiates.

SOLUTION:

This problem is recycled from the 2005 Qual, problem 13. The solution is
there, on the web.

#15 :GRADUATE QUANTUM MECHANICS

PROBLEM: A spherical well has V (r ≤ a) = −V0 and V (r ≥ a) = 0. A (non-
relativistic) particle of energy E > 0 and mass m is inside, with angular
momentum . ,= 0.

(a) Compute the transition factor T (ratio of flux outside and inside the
well) in the WKB approximation. Neglect the angular momentum inside
the well, and you need not evaluate the associated integral.

(b) Express the lifetime τ of the particle to be inside the well, in terms of
T and the constants of the problem.

SOLUTION:

(a)

T =

(
E

E + V0

)1/2

exp

(

−2

∫ b

a
dr

√
.(. + 1)

r2
−

2mE

!2

)

,

with b given by (((+1)
b2 = 2mE/!2. (b) The particle hits the wall at a rate

v/2a, so

τ−1 = T

√
(E + V0)

2ma2
.

#16 :GRADUATE QUANTUM MECHANICS

PROBLEM: Consider various numbers of particles, of mass M and spin s, in
a 3d central potential V ()r) = C|)r|2, where C is a constant.

(a) A single spin s particle is in the first excited state. What is the energy?
What is the schematic form of the energy eigenstate? What values
of Lz can be measured in this state, where )L is the orbital angular
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momentum. What values of )L2, )S2, and )J2 can be measured, where
)J = )L + )S is the total angular momentum?

(b) Now consider the case of two identical fermions, with s = 1
2 , which

interact with each other only very weakly, with a small repulsive po-
tential of strength ε ≈ 0. Ignore the potential except to resolve de-
generate energy levels. What is the ground state energy? What is the
schematic form of the groundstate energy eigenfunction? What values
of )L2, )S2, and )J2 can be measured in the groundstate?

(c) Same setup as part (b). Now consider the first excited state. Again,
the particles have a slight repulsive potential. What is the first excited
state energy? What is the schematic form of its energy eigenfunction?
What values of )L2, )S2, and )J2 can be measured in this first excited
state?

(d) Same questions as the previous part, but for the case where the two
particles have a weakly attractive potential.

SOLUTION:

(a) It’s a 3d SHO, with ω =
√

2C
M , so the energy eigenvalues are (n+ 3

2 )!ω,

and the schematic form of the energy eigenstates for a single particle is
|nx, ny, nz〉 = |nx〉× |ny〉× |nz〉, with n = nx +ny +nz. A first excited
state energy is e.g. |1, 0, 0〉, with energy 5

2!ω. There are 3 such states,

corresponding to . = 1, i.e. Lz = !, 0,−!. The value of )L2 is 2!2,
)S2 = !2s(s + 1), and )J2 = !2j(j + 1), with j = 1 + s, s, |s − 1|.

(b) The groundstate eigenfunction is of the form (|)0〉 × |)0〉) ⊗ |S = 0〉,
where the first are the spatial parts, and the latter is the spin part,
|S = 0〉 = 1√

2
(|+−〉−|−+〉), so the entire wavefunction is appropriately

antisymmetric under particle interchange. Since the particles interact
only weakly, the energy is approximately the decoupled sum, E = 3!ω.
The values of )L2, )S2, and )J2 are all zero.

(c) Thanks to the repulsion, there is lower energy if the spatial part is anti-
symmetric under particle interchange, e.g. 1√

2
(|1, 0, 0〉|)0〉− |)0〉|1, 0, 0〉).

Consequently, the spin part must be symmetric, i.e. s = 1. The en-
ergy is 7

2!ω + O(ε). The total orbital angular momentum is . = 1, so
)L2 = 2!2. Since s = 1, )S2 = 2!2. The total )J2 = !2j(j + 1), with
j = 2, 1, 0.
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(d) If it’s weakly attractive, now the spatial part should be symmetric,
e.g. 1√

2
(|1, 0, 0〉|0, 0, 0〉 + |0, 0, 0〉|1, 0, 0〉). Consequently, the spin part

must be antisymmetric, i.e. s = 0. The energy is 7
2!ω − O(ε). The

total orbital angular momentum is . = 1, so )L2 = 2!2. Since s = 0,
)S2 = 0. The total )J2 = !2j(j + 1), with j = 1.

#17 : GRADUATE STATISTICAL MECHANICS

PROBLEM: An antiferromagnet consists of two different types of atoms, re-
ferred to as A and B, arranged in a checkerboard pattern on a square lattice
of N total sites. The magnetization direction is perpendicular to the plane
of the lattice, and both types of atoms have magnetic moments µ. There
is an antiferromagnetic interaction of strength J between nearest neighbors
(which are always A-B pairs). The magnetic moments also interact with a
constant external magnetic field of strength H.

Introducing the spin variables σA(x) and σB(y), which take on values ±1,
to describe the magnetization state of the A and B atoms respectively, and
with the lattice vectors x and y ranging over the A and B sites respectively,
we can write down the following energy for a configuration of spins,

E = J
∑

NN

σA(x)σB(y) − µH

(
∑

x

σA +
∑

y

σB

)

,

with ’NN’ indicating sum over nearest neighbors.

(i) Using the mean-field approximation, derive equation(s) describing the
temperature dependence of the average spin for the A and B atoms,
σA and σB , respectively.

(ii) For H = 0, show that spontaneous magnetizations for the two types
of atoms arise for temperature below a critical temperature Tc, i.e.,
solution(s) with σA ,= 0 and σB ,= 0 exist for T < Tc. It is sufficient
to show this graphically. Express Tc in terms of the parameters of the
system. What is the total magnetization M ≡ Nµ (σA + σB) /2 for
T < Tc?

(iii) At T > Tc and for small external field H, work out the dependence
of σA and σB on H and T . Find an expression for the magnetic
susceptibility χ ≡ limH→0 ∂M/∂H for T > Tc. How does χ behave as
T approaches Tc from above?
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SOLUTION:

(i) In the mean-field approximation, the average value of the spin A is
calculated by replacing the spin values of its four nearest neighbors by
their (yet unknown) average values. Thus,

σA =

∑
σA=±1 σA e−4βJσBσA+βµHσA

∑
σA=±1 e−4βJσBσA+βµHσA

.

Similarly,

σB =

∑
σB=±1 σB e−4βJσAσB+βµHσB

∑
σB=±1 e−4βJσAσB+βµHσB

.

These two equations can be rewritten as

σA = tanh [β (µH − 4JσB)] , (7)

σB = tanh [β (µH − 4JσA)] . (8)

(ii) For H = 0, it is clear that if σA > 0, then σB < 0 and vice versa.
Assuming the symmetry σA = −σB , then

σA = tanh (4βJσA) , (9)

and σB satisfies the same equation.

As Eq. (??) admits multiple solutions for 4βJ = 4J/(kT ) < 1, the
critical temperature is Tc = 4J/k.

Since σA = −σB, the total magnetization is always M = 0 in the
absence of an external magnetic field.

(iii) In the presence of a small external field H and for T > Tc, we can
expand Eqs. (??) and (??) to obtain

σA ≈ β(µH − 4JσB), (10)

σB ≈ β(µH − 4JσA). (11)

Adding up Eqs. (??) and (??) yields

(σA + σB) · (1 + 4βJ) ≈ 2βµH,
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or

M ≡ µN
σA + σB

2
≈

βµH

1 + 4βJ
.

Hence the magnetic susceptibility is

χ ≡ lim
H→0

∂M

∂H
=

βµ

1 + 4βJ
=

µ

k · (T + Tc)

for T > Tc. Note that χ does not diverge as T approaches Tc from
above, in contrast to the behavior of ferromagnets.

#18 : GRADUATE STATISTICAL MECHANICS

PROBLEM: Consider a system of non-interacting free spinless fermions of mass
m in a two-dimensional box of area A.

(a) Find an expression for the energy per particle at zero temperature, ε̄, in
terms of m and n = N/A, with N the number of spinless fermions in the
box.

(b) Assume the system is in contact with a reservoir with which it can ex-
change particles, and that the chemical potential of the system is indepen-
dent of temperature. The number of particles then depends on temperature.
Find the temperature for which the number of particles is twice the number
of particles at T=0. Give your answer as kBT = xε̄, with ε̄ found in (a), kB

Boltzmann’s constant, and x a numerical factor accurate to four digits.

SOLUTION: Hand written.

#19 : GRADUATE MATH METHODS

PROBLEM: Evaluate the integral by contour integration

I =

∫ ∞

0

dx

(x + β)(x + γ)

where β and γ are real, positive numbers.

SOLUTION: Hand written. Get by including ln z (or zα) in integral and
integrate around its branch cut, above and below the positive real axis and
around a little circle at zero and a big one at infinity, to get I = (ln β −
ln γ)/(β − γ)



N(T = 0) ≡ N0 = A
´ pF

0
d2p

(2π�)2

pF = 2�
�
πN0/A

E
N = �̄ =

´ pF
0 d2p p2

2m´ pF
0 d2p

= π�n0
m

n0 = m�̄
π�

µ �= 0

N(β) = A
´∞
0

d2p
(2π�)2

1
z−1eβp2/2m+1

= 2πA
(2π�)2

m
β

´∞
0

dx
z−1ex+1

x = βp2/2m

´∞
0

dx
z−1ex+1 = − ln(e−x + z−1)|∞0 = ln(1 + z)

N(β)
A = nβ = m

2π�2β ln(1 + z)

nβ = 2n0

β−1 ln(1 + eβµ) = 4�̄

µ µ T = 0 µ = �̄

µ = �̄ T

β−1 ln(1 + eβ�̄) = 4�̄

4q = ln(1 + eq) q ≡ β�̄

e4q − eq = 1

q 15
2 q2 + 3q − 1 = 0

q = 0.2163

kbT = 4.622�̄



PROBLEM:

Using the calculus of residues, evaluate the integral

)

where ~ and yare real, positive numbers.

SOLUTION:

Unfortunately, the given integral CANNOT be evaluated via the contour integral

]-1
I C

for the reason that no contour exists that will allow us to extract lout of It.

We may instead employ the contour integral

,in:e . j~
--------)
(l+f)(t+Y)

with Cas shown in the accompanying figure.

)(

-I
K

-y



With z = pei'!', we have
R

j =J in f. elf

2 r (f+f)(f+¥)
+1

((

which, in the limit r ~ 0 and R~ 00, becomes

I := -; 2 IT 1.
]..

At the same time, by the residue theorem,

In p + L Ii
- f+ 'f

+ _"'_h _'_+_£'_71_] _
-Y-rf

.
-z1il (7-)

Equating (1) and (2), we obtain the desired result:

I = (In ~ -In y)/( ~ - y) .

Alternatively, we may replace In z by z" (with -1< a < 1) and, using the same
contour C,obtain

00

1,= I
o

xO< Jx
(X-f-f)(XTt)

Now, letting a ~ 0, we end up with the same result for I as the one derived above.
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#20 : GRADUATE GENERAL

PROBLEM:

Consider a simplified model of lunar tides in which the ocean is assumed
to be of a constant depth, there is no land, the Earth does not rotate, and
the water achieves the equilibrium in the gravitational field instantaneously.
Calculate the difference in the heights of the high and the low tides using the
following input parameters: the mass of the Moon is µ = 0.012 of Earth’s
mass, the radius of the Earth is R0 = 6400 km, the distance between the
Earth and the Moon is R = 380, 000 km.

SOLUTION:

The perturbation ∆h(r) of the water height at a given point r is related to
the local perturbation of the potential energy ∆U per unit mass:

∆h(r) = −∆U(r)/g .

Denote the Earth’s mass by M , then the mass of the Moon is µM . Let us
choose a reference frame with the origin at the center of the Earth and the
z-axis directed towards the Moon. The position of the Moon is therefore
R = (0, 0, R). The potential energy in question is given by

U(r) = − GµM
|r−R| + za .

Here the first term is the gravitational potential created by the Moon.
The second term, linear in z, has the following origin. In the Earth-Moon
center-of-mass frame, the Earth falls onto the Moon with acceleration a =
GµM/R2. However, in our reference frame the Earth is stationary but there
exists an apparent acceleration −a, which is equivalent to an effective grav-
itational field a directed away from the Moon.

Expanding U to the leading nontrivial order in r, we get

U(r) ≈ −GµM
R + GµM

2R3 (r2 − 3z2) ,

which has the expected dipolar form. Using r = R0, z = R0 cos θ, where θ
is the polar angle, and also g = GM/R2

0, we get

∆h(θ) =
µR4

0
2R3 (3 cos2 θ − 1) , hmax − hmin =

3µR4
0

2R3 ≈ 55 cm .


