
INSTRUCTIONS

PART I : PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. (E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks, ) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.
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#1 : UNDERGRADUATE MECHANICS

PROBLEM: A 1 lb (∼ 0.45 kg) fish is swimming at 1 mph (∼ 0.45m/s) North
and experiences a fluid drag force proportional to its velocity. If its drag
coefficient is 0.01 N/m/s and the fish suddenly stops swimming, how far
North does it coast before coming to a stop? Assume the water is deep
enough so the fish doesn’t sink to the bottom.

SOLUTION:

Newton’s 2nd law: F = mv̇ = −γv, so ẋ = v = v0 exp(−γt/m) and thus
x = mv0

γ (1 − exp(−γt/m)). Taking t→ ∞, x→ mv0/γ ≈ 20 meters.

#2 : UNDERGRADUATE MECHANICS

PROBLEM: A pencil floats before you in a weightless environment. You flick
the very tip of the pencil, imparting an impulse force perpendicular to the
pencil axis. How much of the energy transferred to the pencil is in rota-
tional motion vs. translational motion? Also, would the path of the tip be
described as forming closed loops, executing a perfect no-slip cycloid, or as
a wavy pattern? Approximate the pencil as a thin, uniform rod.

SOLUTION:

Answers: The energy is 75% rotational, 25% translational. The path of the
tip forms closed loops.

Imagine that a very small particle impacts the end of the pencil at its tip,
a distance L/2 from the pencil’s center of mass. Independent of the degree
of elasticity in the collision, some momentum, p, is imparted to the pencil,
with angular momentum ` = pL/2. [If the particle arrives with vi and leaves
with vf it will deposit momentum p = m(vi − vf ) and the corresponding `.]

The pencil, of mass M and length L, will therefore acquire a speed of V =
p/M and an angular velocity, ω, according to ` = Iω = pL/2, or ω =
MV L/2I. The moment of inertia, I, is:

I =

∫ L
2

−L
2

M
L r

2 dr = 1
12ML2

We can therefore find that ω = 6V/L. At the tip, the velocity is vtip =
ωL/2 = 3V . Thus the tip speed is three times that of the speed of the
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pencil center of mass.

The translational kinetic energy of the pencil is Ttrans = 1
2MV 2, and the

rotational energy is Trot = 1
2Iω

2 = 3
2MV 2. Therefore, of the total energy,

Ttot = 2MV 2, three quarters is rotational, and one quarter is translational.

Because the tip speed exceeds the center-of-mass speed, the path of the tip
will describe a series of closed loops in space.

#3 : UNDERGRADUATE E&M

PROBLEM: What is the critical angle for total external reflection for pho-
tons of wavelength λ and frequency ω = 2πc/λ in the vacuum, falling on a
metal plate with electron density ne? Assume that electrons in a metal are
essentially free.

SOLUTION:

The critical angle is determined from Shell’s law n1 cos θ1 = n2 cos θ2, where
angles are measured with respect to the surface. θ2 = 0 for the critical angle.
Therefore,

cos θc = n. (1)

Now we calculate the index of refraction n(ω) in a metal.

Equation of motion for a free electron md2x
dt2

= −eE. For AC electric field

E = E0e
−iωt and x = x0e

−iωt, we obtain x = eE
mω2 .

The polarization of the metal as the dipole moment per unit volume is
P = −exn = −ne2E

mω2 , so that the polarizability α = P/E = −nee2

mω2 . For the

dielectric function ε = 1 + 4πα we obtain ε = 1 − 4π nee2

mω2 , therefore

n2 = ε = 1 − 4π nee2

mω2 . (2)

Combining (1) and (2) we obtain

cos2 θc = 1 − 4πnee2

mω2 = 1 − ω2
p

ω2 (3)

or
sin θc =

ωp

ω , (4)
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where ωp =
(

4πnee2

m

)1/2
is the plasma frequency. For ω < ωp one obtains

total reflection at all angles.

#4 : UNDERGRADUATE E&M

PROBLEM: Consider two electric charges in the x − y plane: a charge +q at
y = d/2 and a charge −q located at −d/2; a dipole separated by a distance
d.

(i) Write down the electric field at a point located at a general point r, θ
in the x − y plane. The angle θ is measured clockwise from the y-axis
and r = 0 corresponds to x = y = 0. The solution can be left as a
function of the cartesian coordinates or in terms of r, θ.

(ii) Simplify this expression for the electric field when r � d; that is, at
large distances from x = y = 0.

(iii) If the dipole is then embedded in a constant electric field, E, with field
lines parallel to the x = y axis (i.e., at θ = 45◦), what is the torque on
the dipole?

(iv) How much energy must be supplied to rotate the dipole orthogonal to
the electric field, E?

SOLUTION:

(i) The potential, V, can be used to get the electric field. The potential
V = kq(1/r+ − 1/r−), where r+,− is the distance from the positive or
negative charge. The solution can be left as a function of the cartesian
coordinates or r, θ.

(ii) When r � d we get V = kqd cos θ/r2 and E = −∇V = ....

(iii) The torque is ~τ = ~r × ~F = ~d× ~E, so τ = qEd sin θ =
√

2
2 qEd.

(iv) How much energy must be supplied to rotate the dipole orthogonal
to the electric field, E? This is the work, which equals the torque
multiplied by the angle through which the rotation takes place: W =

qEd cos θ =
√

2
2 qEd.
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#5 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: Neutrally buoyant plastic spheres having 1-micron radii are im-
mersed in still water (viscosity= 0.001 N-s/m2) at 30 degrees Celsius. Under
these conditions, a sphere diffuses a distance of about 30 microns, on aver-
age, from its starting position in 10 minutes due to Brownian motion

(i) What distance, on average would a sphere diffuse if the radius were
doubled to 2 microns? (Assuming all other parameters are the same)?

(ii) What distance, on average, would the sphere (radius = 1 micron)
diffuse if the temperature was increased to 60 degrees Celsius?

(iii) What distance, on average, would the sphere (radius = 1 micron)
diffuse if the time were doubled to 20 minutes? (With temperature =
30 degrees Celsius.)

(iv) What distance, on average, would the sphere (radius = 1 micron)
diffuse in 10 minutes if the viscosity was doubled to 0.002N − s/m2?
(With temperature = 30 degrees Celsius.)

SOLUTION: According to Einstein’s theory of Brownian motion the mean
square displacement after time t is 〈(∆r)2〉 ∝ Dt, where D is the diffusion
coefficient and t is the elapsed time. The diffusion coefficient is D = kT/γ,
γ is the drag coefficient, k is Boltzmann’s constant and T is the absolute
temperature ( 303K). According to Stokes’ law, γ ∝ ηr for a small sphere
moving slowly through a fluid, where η=viscosity and r=radius of the sphere.

Thus average distance =
√

〈∆r2〉 ∝
√
Dt ∝

√
kT
γ t ∝

√
kT
ηr t.

(i) Doubling r, distance is multiplied by 1/
√

2 = 0.707.

(ii) Raising temperature from 30 to 60C, absolute temperature is raised
from 30+273=303 to 333K, so distance is multiplied by

√
333/303 =

1.05.

(iii) Doubling t, distance is multiplied by
√

2 = 1.41.

(iv) Doubling η, distance is multiplied by 1/
√

2 = 0.707.
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#6 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: The Rayleigh-Jeans law expresses the low-frequency behavior of
the Planck Distribution. This problem involves the derivation of the Rayleigh-
Jeans law. First, consider a cubical metallic cavity with length L. The wave
equation leads to electric field solutions of the form:

E = Eo sin(nxπx
L ) sin(

nyπy
L ) sin(nzπz

L ) sin(2πct
λ ) (5)

Where nx,y,z are the mode numbers and λ is the electromagnetic wavelength.

(i) Substitute this equation into the wave equation to obtain a relationship
between n2

x + n2
y + n2

z, L, and λ.

(ii) Including both polarization modes, the total number of modes, N ,

in the cavity as a function of wavelength, is found to be N = 8πL3

3λ3 .
Compute the density of modes as a function of wavelength. Remember
that N is a function of L. Express your answer as the density of modes
divided by the cavity volume.

(iii) If the cavity is at temperature T, the energy density per unit wave-
length in the cavity (du/dλ) is proportional to the density of modes
(as found in the previous part) times the energy per mode. Using
this, together with the classical (equipartition) result for the energy
per mode, compute du

dλ . Also, find the the energy density as a function

of frequency, ν : du
dν .

(iv) Recall that expression for du/dν obtained in the previous part is ap-
proximately valid for large kT/ν, but obviously breaks down for large
frequencies. Planck fixed this (by replacing equipartition with some-
thing else). Using these facts, write down the Planck distribution for
du
dν , with the correct numerical factors and low frequency behavior.

SOLUTION:

(i) The wave equation is: ∂2E
∂x2 + ∂2E

∂y2 + ∂2E
∂z2 = 1

c2
∂2E
∂t2 . Substituting the

ansatz given in the problem, we arrive at n2
x + n2

y + n2
z = 4L2

λ2 .
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(ii) We need to simply calculate dN
dλ = −8πL3/λ4. The number of modes

decreases with increasing wavelength so there is a negative sign. The
number of modes per unit volume per unit wavelength is obtained by
dividing by the volume of the cubical cavity: L3.

(iii) Classically, the energy per mode is kbT , where kb is Boltzmann’s con-
stant. This leads to du

dλ = 8πkbT/λ
4. To get this in terms of fre-

quency, du
dν we need to convert using the chain rule of differentiation:

du
dν = du

dλ
dλ
dν = du

dλ
d(c/ν)

dν = −du
dλ

c
ν2 . Using the original equation for du/dλ,

and converting λ to c/ν we get: du
dν = kbT

8πν2

c3
.

(iv) The Planck distribution for the energy density of radiation is du/dν =
8π~ν3

c3
[e~ν/kbT − 1]−1. Check the normalization: allowing ν to go to

zero, and expanding the exponential, we get du
dν = kbT

8πν2

c3 .

#7 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: A particle of mass m moves in a potential V (r) = −V0 for r < a
and V (r) = 0 for r > a. Find the smallest V0 for which there is a bound
state of zero angular momentum in the potential. Recall ∇2 = 1

r2

∂
∂r (r

2 ∂
∂r )+

1
r2 sin φ

∂
∂φ(sinφ ∂

∂φ) + 1
r2 sin2 φ

∂2

∂θ2 .

SOLUTION:

For zero angular momentum the radial Schrödinger equation is

− ~
2

2m

(
∂2

∂r2 + 2
r

∂
∂r

)
ψ = Eψ (r > a), (6)

− ~
2

2m

(
∂2

∂r2 + 2
r

∂
∂r

)
ψ = (V0 + E)ψ (0 ≤ r ≤ a). (7)

Introducing U = rψ, we obtain

∂2U
∂r2 − α2U = 0 (r > a), (8)

∂2U
∂r2 + β2U = 0 (0 ≤ r ≤ a), (9)

where α =
(−2mE

~2

)1/2
and β =

(
2m(V0+E)

~2

)1/2
.

We look for solutions in the limit E → 0−. We obtain

U = Ae−αr (r > a), (10)

U = B sinβr (0 ≤ r ≤ a), (11)
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where we have eliminated the singular solutions for ψ. Continuity of U and
its derivative at r = a requires that β cot(βa) = −α. For E → 0, α→ 0 and
cot(βa) → 0. This happens when βa = π/2, or V0 = π2

~
2/(8ma2).

#8 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM:

A 3-dimensional isotropic harmonic oscillator has energy eigenvalues En =
~ω(n+ 3

2 ), where n = 0, 1, 2, · · · .

(a) Find the degree of degeneracy of quantum state n = 2.

(b) Find the degree of degeneracy of the quantum state n for general n.

SOLUTION:

The 3-D quantum oscillator state is the sum of the 3 1-D quantum oscillators
with eigenvalues ~ω(nx+ 1

2), etc, each with quantum number: nx, ny, and nz,
where each quantum number is an integer 0, 1, 2, · · · , and so n = nx+ny+nz.
We want the number of combinations (nx, ny, nz) of these three numbers that
add up to n.

(a) Consider first n = 2. We can write 2 = 1 + 1 + 0 or 2 = 0 + 0 + 2, and
each has 3 permutations, so D2 = 6.

(b) Now consider general n. Start by fixing n and nz. The number of of
(nx, ny) pairs is given by those combos that have nx+ny = n−nz. These are
(nx, ny) = (0, n−nz), (1, n−nz −1), (2, n−nz −2), up to (n−nz, 0). There
are n−nz +1 of these combos. This is for fixed nz, so we sum over nz. Total
degeneracy is Dn =

∑n
nz=0(n− nz + 1) = (n+ 1)n− n(n+ 1)/2 + 1(n+ 1).

This can be simplified to Dn = (n+2)(n+1)
2 .

#9 : UNDERGRADUATE MATH

PROBLEM:

Consider the 5x5 matrix:



CODE NUMBER: ————– SCORE: ———— 8





0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0





(a) Find its eigenvalues.

(b) Find the eigenvector corresponding to eigenvalue 0.

SOLUTION:

The matrix is of the general form

Aij = δi,j±1 (12)

for i = 2, 3, ..., N −1, and A1,2 = AN,N−1 = 1, A11 = ANN = 0, with N = 5.
The eigenvectors cj and eigenvalues λ satisfy

cj−1 + cj+1 = λcj j = 2, 3, ..., N − 1 (13a)

c2 = λc1 (13b)

cN−1 = λcN (13c)

so defining c0 = cN+1 = 0 we can use Eq. (13a) with j = 1, 2, ...N . The
solution is cj = eikj or cj = e−ikj, and eigenvalues

λ = eik + e−ik = 2cos(k) . (14)

The general solution is
cj = aeikj + be−ikj (15)

and the coefficients a, b as well as the parameter k are determined from the
boundary conditions c0 = cN+1 = 0 (and normalization). From c0 = 0 we
find b = −a, hence

cj ∝ sin(kj) (16)

and from cN+1 = 0 we find
k = π

N+1ν (17)

with ν = 1, 2, ..., N .
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(a) For our case, N = 5 and Eq. (14) yields

λν = 2cos(π
6 ν) ν = 1, 2, 3, 4, 5 (18)

so the eigenvalues are 0, ±1, ±
√

3.

(b) The eigenvalue λ = 0 corresponds to ν = 3. From Eqs. (16) and (17),
the (normalized) eigenvector is

cj = 1√
3
(1, 0,−1, 0, 1) (19)

#10 : UNDERGRADUATE GENERAL PHYSICS

PROBLEM:

An accidental bullet rips through the side of a 737 passenger airplane in
flight at high-altitude, perhaps carrying passengers home from a gun show.
Assuming that the structural damage is limited to the bullet hole itself (no
big rips result), and that the external environment is practically a vacuum,
use kinetic theory to estimate the timescale over which the air would be
evacuated from the airplane? For reference, one atomic mass unit is about
930 MeV, and air is mostly comprised of N2, with O2 making up almost all
the rest.

SOLUTION:

We first estimate some relevant dimensions. The airplane fuselage has a
diameter of at least 3 m and a length of at least 20 m, making a volume of
approximately V ∼ 150 m3. We can estimate the area of the bullet hole to
be approximately 1 cm2, or 0.0001 m2.

How fast will air particles escape through the hole? Each air particle has ap-
proximately kT of energy, so that the 3-D particle velocity is v ≈

√
2kT/m.

Here we have several options for evaluation:

• Use the fact that kT ≈ 1
40 eV at room temperature, and mc2 for

an atomic mass unit is 930 MeV, and air—composed of about three-
quarters N2 at 28 mass units per molecule, and one-quarter O2 at
32 mass units per molecule—is about 29 proton masses per molecule.
Also armed with c ≈ 3 × 108 m/s, we find that v ∼ 410 m/s.
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• Remember the physical constants in some system of units and directly
evaluate. For example, k = 1.38×10−23 J/K, m = 29×1.66×10−27 kg,
T ≈ 293 K, to get v ∼ 410 m/s.

• Know that kT ≈ 1
40 eV at room temperature, and that 1 eV is about

1.6× 10−19 J. Now use whatever knowledge of mass you want to turn
this into a speed.

• Remember that for an ideal gas cs =
√
γkT/m, where γ = 7/5 for

diatomic air (or 5/3 for monatomic species), and evaluate as above.
This evaluates to about 350 m/s.

The first three methods give the magnitude of air velocity, but only one
component will be directed through the bullet hole, so the somewhat reduced
sound speed is the most appropriate choice—though the numerical result will
be virtually identical in either case compared to the crudeness of our other
estimates.

If air escapes at 350 m/s through a 0.0001 m2 hole, the volumetric loss rate
is V̇ = 0.035 m3/s. It would take a time τ = V/V̇ ∼ 4500 s, or over an
hour, to evacuate the air. The actual pressure profile will be exponential in
nature, with a time constant of approximately τ . Regardless, there is plenty
of time to calmly stick a finger in the hole, and even get all the way back to
Texas.
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#11 :GRADUATE MECHANICS

PROBLEM: A quasi-particle has the following Hamiltonian for motion in two
dimensions (x, y):

H(x, y, px, py) = p2
x + x2p2

y + x2y2.

Find x(t), y(t) for initial conditions x(0) = 0, px(0) = 1, y(0) = 0, py(0) = 1.
Hint: ∫

dy√
1−y2

= sin−1 y.

SOLUTION:

The Hamiltonian is separable. The Hamilton-Jacobi equation is

∂S
∂t =

(
∂S
∂x

)2
+ x2

[(
∂S
∂y

)2
+ y2

]
,

with solution S = −Et+Wx(x) +Wy(y)

where Wx =
∫
pxdx , Wy =

∫
py dy.

⇒
(

∂Wy

∂y

)2
+ y2 = const = py(0)

2 + y(0)2

⇒ p2
y + y2 = 1.

Similarly p2
x + x2p2

y0
= H ⇒ p2

x + x2 = 1.
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Also,

ẋ = ∂H
∂px

= 2px , ṗx = −∂H
∂x = −2x p2

y(0) = −2x

⇒ ẍ = −4x ⇒ x = A sin 2t

ẋ(0) = 2A = 2px(0) = 2 ⇒ A = 1

ẏ = ∂H
∂py

= 2x2py ;

⇒ ẏ = 2 sin2 2t
√

1 − y2

dy√
1−y2

= 2dt sin2 2t = dt(1 − cos 4t)

↓
sin−1 y = t− 1

4 sin 4t

⇒ y = sin
(
t− 1

4 sin 4t
)

x = sin 2t.

#12 :GRADUATE MECHANICS

PROBLEM: A finite one-dimensional system of balls has Lagrangian

L =

N∑

j=1

1

2
m φ̇2

j −
N−1∑

j=1

1

2
k (φj+1 − φj)

2 ,

where φj is the displacement of the jth ball.

(a) Derive the equations of motion, and show that they have solutions of
the form

φj = A exp [i(βj − ωt)] .

Find the relation between β and ω.

(b) Impose periodic boundary conditions on this one-dimensional “crystal”.
That is, imagine that the crystal is actually infinite, but that the displace-
ment of the (N + j)th ball is identical to the displacement of the jth ball.
Find the values of β which are consistent with this condition.

(c) In parts (a) and (b), you have found a complete set ofN normal modes for
the crystal. Define normal coordinates Qn (n = 1, · · · , N) and write the La-
grangian L in terms of the Qn. (Note: first add a term 1

2k (φN − φ1)
2 to the

potential energy, coupling the first and last masses, so the one-dimensional
system is periodic.)
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(d) Take the continuum limit, allowing the spacing a between the masses
to approach zero, the number of balls N to infinity, while lima→0m/a = ρ,
lima→0 ka = κ, and lima→0,N→∞Na = D remain finite, and express the
Lagrangian density L ≡ lima→0 L/a in the continuum limit in terms of a
field φ(x, t). Show that the equation of motion for this Lagrange density is
a wave equation. What is the velocity v of the wave equation?

SOLUTION: (a) The Euler-Lagrange equations for an infinite one-dimensional
system are

d

dt

∂L

∂φ̇j

=
∂L

∂φj
⇒

mφ̈j = k (φj+1 − φj) − k (φj − φj−1) = k (φj+1 − 2φj + φj−1)

Solutions of the form:

φj = A exp [i(βj − ωt)] ⇒

−mω2 = k
(
eiβ − 2 + e−iβ

)
= 2k (cos β − 1)

ω2 =
2k

m
(1 − cos β)

(b) Periodic boundary conditions : φN+j = φj.

eiβN = 1 ⇒ βn =
2πn

N
, n = 0, 1, 2, 3, · · · , N − 1.

(c) Normal coordinates defined by discrete Fourier series

Qn ≡
N∑

j=1

φj e
−i 2π

N
nj

φj ≡
N∑

n=1

Qn e
i 2π

N
nj

L =

N∑

j=1

1

2
m φ̇2

j −
N∑

j=1

1

2
k (φj+1 − φj)

2
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L =

N∑

n=1

N∑

m=1

N∑

j=1

{
1

2
mQ̇nQ̇m ei

2π
N

(n+m) − 1

2
kQnQm

(
ei

2π
N

n − 1
) (

ei
2π
N

m − 1
)
ei

2π
N

(n+m)

}

L =
N∑

n=1

N∑

m=1

δn,−m

{
1

2
mQ̇nQ̇m − 1

2
kQnQm

(
ei

2π
N

n − 1
) (

ei
2π
N

m − 1
) }

L =

N∑

n=1

{
1

2
mQ̇nQ̇−n − 1

2
kQnQ−n

(
ei

2π
N

n − 1
) (

e−i 2π
N

n − 1
) }

L =

N∑

n=1

{
1

2
mQ̇nQ̇−n − 1

2
kQnQ−n

(
2 − 2 cos

2π

N
n

) }

L =
1

2
m

N∑

n=1

{
Q̇nQ̇

∗
n − ω2

nQnQ
∗
n

}

ω2
n =

2k

m
(1 − cos βn) =

2k

m

(
1 − cos

2π

N
n

)

where Q∗
n = Q−n.

(d) Take the limits lim a → 0, limN → ∞ with lim m
a → ρ, lim ka → κ,

limNa→ D.

Discrete Lagrangian

L =

N∑

j=1

1

2
m φ̇2

j −
N∑

j=1

1

2
k (φj+1 − φj)

2

with spacing ∆x = a. Replace φj = A exp [i(βj − ωt)] by

φ(x) = A exp
[
i
(
β̃x− ωt

)]
, β̃ ≡ β

a
, x ≡ ja

L ≡ lim
a→0

L

a
= lim

a→0

[
1

2

m

a
φ̇2 − 1

2

k

a
a2

(
∂φ

∂x

)2
]

=
1

2
ρ φ̇2 − 1

2
κ

(
∂φ

∂x

)2

∂µ

(
δL

δ(∂µφ)

)
=
δL
δφ

ρ φ̈− κ
∂2φ

∂x2 = 0
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φ̈− κ

ρ

∂2φ

∂x2 = 0

Wave equation with v2 = κ/ρ.

#13 :GRADUATE E&M

PROBLEM: A long rod of paramagnetic material with linear magnetic per-
meability µ, and cross-sectional area a, is inserted a distance x into a long
solenoid of length d, cross-sectional area A, carrying current I with total
number of turns N . The current is held fixed by an external battery. Find
the force (magnitude and direction) on the rod.

SOLUTION:The change in magnetic energy Wm due to insertion of rod =
1
2∆LI2 where ∆L is the change in the inductance of the system due to the
rod. For a closed system this would be the work done on the rod. However,
since current is fixed, the external battery also does work on the system as
the rod is moved. The work done by the battery is −I

∫
dtEMF where

EMF = I∂L/∂t, so the work by the battery on the rod is −∆LI2.

Thus, the total work done on the rod is ∆E = −1
2∆LI2. The force F on

the rod is F = −∂∆E/∂x. It remains only to find an expression for ∆L.
This can be found from the general expression

Wm = 1
2LI

2 =

∫
dV µH2/8π.

Maxwell’s equation implies H = 4πIN/(dc), everywhere in the solenoid and
the rod (neglecting end effects since the rod is long). This implies

∆L = H2

4πI2 (µax+ (A− a)x+A(d− x) −Ad)

= H2

4πI2a(µ− 1)x.

Therefore ∆E = −H2

8π a(µ− 1)x, so F = H2

8π a(µ− 1). The force is in the di-
rection of increasing x (into the solenoid), since for a paramagnetic material
µ > 1.

#14 :GRADUATE E&M

PROBLEM: Suppose that there is a density nQ of charge carrier particles, all
with charge Q, mass m, and (non-relativisitic) velocity ~v. A superconductor
has ~P = 0, where ~P = ∂L/∂~v, (recall that S ⊃

∫ Q
c
~A · d~x).
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(a) Show that the current is proportional to the vector potential in the
superconductor, ~J = C ~A, and find the constant of proportionality C.

(b) Suppose that the superconductor has net charge density ρ = 0 (the
charge carriers are balanced out by opposite sign, static charges). There is
an applied external electric field

~E(~x, t) = ~E0 cos(~k · ~x− ωt),

with ~E0 some constant vector. Solve for ~B, ~J , and derive the dispersion
relation ω = ω(k).

SOLUTION:

(a) Since ~J = Qne~v and ~P = m~v +Q~A/c, we have ~J = −Q2nQ
~A/mc.

(b) Solve Maxwell’s equations to find ~B = cω−1~k × ~E0 cos(~k · ~x − ωt) and
then solve for ~J . Define λL =

√
mc2/4πQ2nQ. Find

~J =
c

4π
(
ck2

ω
− ω

c
)~E0 sin(~k · ~x− ωt),

~B = −(
ck2

ω
− ω

c
)λ2

L
~k × ~E0 cos(~k · ~x− ωt)

and the dispersion relation is

ω2 − c2k2 = c2λ−2
L .

#15 :GRADUATE STATISTICAL MECHANICS

A spin-1 Ising model in one dimension is described by the Hamiltonian

HN{σi} = −J
N∑

i=1

σiσi+1, (σi = −1, 0,+1).

Write down the transfer matrix (P ) (where, recall, QN = TrPN) for this
interaction and show that the free energy AN (T ) of this model in the ther-
modynamic limit is equal to

−NkT ln
(

1
2

[
(1 + 2 coshK) + (8 + (2 coshK − 1)2)1/2

])
, (K ≡ J/kT ).
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Examine the limiting behavior of this quantity as T → 0 and as T → ∞,
and discuss the physical interpretation of each limit.

SOLUTION: Assuming a closed endless structure, the partition function is

QN (T ) =
∑

{σi}
exp[β

N∑

i=1

Jσiσi+1] (σN+1 = σ1)

=
∑

{σi}
exp(βJσ1σ2) exp(βJσ2σ3) . . . exp(βJσNσ1)

=
∑

{σi}
〈σ1|P |σ2〉〈σ2|P |σ3〉 . . . 〈σN |P |σ1〉,

where 〈σi|P |σi+1〉 are the matrix elements of the transfer matrix (P ) =
(eβJσiσi+1). Writing out this 3 × 3 matrix (with 1s in the middle row and
column and e±βJ in the corners), the eigenvalues are found to be

λ1,2 = 1
2 [(1 + 2 coshK) ± (8 + (2 coshK − 1)2)1/2], λ3 = 2 sinhK.

It follows that QN (T ) = Tr(PN ) = λN
1 + λN

2 + λN
3 .

In the thermodynamic limit, only the largest eigenvalue, viz. λ1, matters
– with the result that AN (T ) = −kT lnQN (T ) ≈ −NkT lnλ1, which gives
the stated result.

In the limit T → 0, i.e. K → ∞, the function coshK ≈ 1
2e

K and hence
A ≈ −NJ ; this corresponds to a state of perfect order, with U = −NJ and
S = 0.

In the limit T → ∞, i.e. K → 0, the function coshK → 1 and hence
A → −NkT ln 3; this corresponds to a state of complete randomness, with
3N equally likely microstates, which entails U = 0 and S = Nk ln 3.

#16 :GRADUATE STATISTICAL MECHANICS

PROBLEM: The radius of a neutron star of mass equal to a solar mass is 12.4
km. Find the radius of a neutron star of mass equal to two solar masses.
Show all steps needed to derive the answer. Assume no interaction between
the neutrons other than the gravitational force and treat the problem non-
relativistically.
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Hints:

(1) The gravitational energy of a sphere of mass M and radius R is

Egrav = −3
5G

M2

R (20)

(2) The kinetic energy of N spin 1/2 fermions is

Ekin = 3
5NεF (21)

where εF is the Fermi energy.

SOLUTION:

The Fermi energy of a system of N spin 1/2 fermions of mass m is

εF =
~2k2

F
2m (22)

where kF is the Fermi wavevector, related to the density N/V by

kF = (3π2 N
V )1/3 (23)

The volume of a sphere of radius R is (4π/3)R3. Hence

εF = ~
2

2m(9π
4 )2/3N2/3 1

R2 (24)

and the kinetic energy is

Ekin = aN5/3

R2 (25)

with a a positive constant. The total massM = Nm, hence the gravitational
energy is

Egrav = −bN2

R (26)

with b a positive constant, and the total energy is

Etot = aN5/3

R2 − bN2

R (27)

Minimizing with respect to R yields

R = 2a
b

N5/3

N2 = 2a
b

1
N1/3 (28)

Therefore

R(2 solar masses) = 1
21/3R(1 solar mass) = 9.84km (29)
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#17 : GRADUATE QUANTUM MECHANICS

PROBLEM: Two spin 1/2 particles of massm interact via Hint = C~S1·~S2δ
3(~r),

where C is a constant.

(a) Calculate the approximate differential and total scattering cross section
for the spin singlet configuration in the case where the particles are distin-
guishable.

(b) Calculate the approximate differential and total scattering cross section
for the spin triplet configuration, in the case where the two particles are
distinguishable.

(c) Compute the differential scattering cross section for unpolarized scatter-
ing, again for distinguishable particles.

(d) How do the above change when the particles are indistinguishable?

(e) How would your answer to part (d) change if the interaction is a more
general Hint = ~S1 · ~S2f(~r)?

SOLUTION:

Use the Born approximation:

f(~q) = − 2m

4π~2

∫
d3~rei~q·~rHint(~r) = − mC

2π~2
~S1 · ~S2

and ~S1 · ~S2 = 1
2(S2−S2

1−S2
2) = 1

2(s(s+1)− 3
2)~2, which gives ~S1 · ~S2 = −3

4~
2

(singlet) or ~S1 · ~S2 = 1
4~

2 (triplet).

The differential cross section is dσ
dΩ = |f(q)|2.

(a) For the singlet, dσ
dΩ = 9m2C2

64π2 . It’s isotropic, so the total cross section is

σ = 9m2C2

16π .

(b) For the triplet, dσ
dΩ = m2C2

64π2 and σ = m2C2

16π .

(c) For unpolarized, average the one singlet with the 3 triplet to get dσ
dΩ =

3m2C2

64π2 .

(d) For indistinguishable the total wave function must be antisymmetric.
The singlet scattering is unchanged, since the spin part of the singlet is
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already antisymmetric. The triplet scattering on the other hand vanishes,
because a spatially antisymmetric wavefunction can’t overlap with δ(~r). So
only the singlet scatters. An unpolarized beam would then scatter with
dσ
dΩ = 9

4
m2C2

64π2 .

(e) For f(~r) the triplet can scatter, since the antisymmetric wavefunction
can then give scattering even though the particles don’t overlap.

#18 : GRADUATE QUANTUM MECHANICS

Let L± = Lx ± iLy and Lz be angular momentum operators. Consider an
operator V+ which satisfies

[L+, V+] = 0, [Lz, V+] = V+.

(a) Let |`,m〉 be a simultaneous eigenfunction of L2 and Lz with eigenvalues
`(`+ 1) and m, respectively. (Here, ~ = 1.) Show that

V+|`, `〉 = const |`+ 1, `+ 1〉.

(b) Demonstrate, for the case of orbital angular momenta, that

V+ = eiφ sin θ

satisfies the commutation relations of V+ with L+ and Lz given above. Recall
that the operators L+ and Lz are given by the differential operators

L+ = eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)
,

Lz = −i ∂
∂φ
.

(c) Assume that |0, 0〉 = const ≡ 1/
√

4π. Using the equations in parts (a)
and (b), determine the functions |`, `〉 for arbitrary `, normalized such that

〈`, `|`, `〉 = 1.

A useful integral is

∫ π/2

0
dθ sin2`+1 θ =

2` `!

(2`+ 1)!!
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where (2`+ 1)!! ≡ (2`+ 1)(2` − 1) · · · 5 · 3 · 1.

SOLUTION: (a)
L2 |`,m〉 = ` (`+ 1) |`,m〉

Lz |`,m〉 = m |`,m〉

Lz (V+|`, `〉) = ([Lz, V+] + V+Lz) |`, `〉 = (V+ + V+Lz) |`, `〉 = (`+ 1) (V+|`, `〉)

Thus, V+|`, `〉 is a state with Lz eigenvlaue m = `+ 1. Explicitly,

V+|`, `〉 =
∑

n≥`+1

cn|n, `+ 1〉.

Also,
L+V+|`, `〉 = V+L+|`, `〉 = 0

since L+|`, `〉 = 0 since m = ` is the state with the highest Lz eigenvalue.
This equation implies that

∑

n≥`+1

cnL+|n, `+1〉 = 0 =
∑

n≥`+1

√
n(n+ 1) − `(`+ 1)|n, `+2〉 =

∑

n≥`+2

√
n(n+ 1) − `(`+ 1)|n, `+2〉,

which implies that
cn = 0, n ≥ `+ 2.

(b)

[L+, V+] =

[
eiφ

(
∂

∂θ
+ i cot θ

∂

∂φ

)
, eiφ sin θ

]

= eiφ
(
cos θeiφ + i cot θ(ieiφ sin θ)

)
= 0

[Lz, V+] =

[
−i ∂
∂φ
, eiφ sin θ

]
= eiφ sin θ = V+

(c)

|0, 0〉 =
1√
4π

∫
dΩ = 1

|1, 1〉 = c1 V+|0, 0〉,
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〈1, 1|1, 1〉 = |c1|2 〈0, 0|V †
+V+|0, 0〉 = |c1|2

∫ 2π

0
dφ

∫ +1

−1
d(cos θ) sin2 θ =

8π

3
|c1|2 = 1 ⇒ c1 =

√
3

8π
.

In general,

|`, `〉 = c` (V+)`|0, 0〉 =
1√
4π
c` e

i`φ sin` θ

〈`, `|`, `〉 = 1 = |c`|2
1

4π

∫ 2π

0
dφ

∫ +1

−1
d(cos θ) sin2` θ = |c`|2

∫ π/2

0
dθ sin2`+1 θ = |c`|2

2` `!

(2`+ 1)!!

⇒ c` =

√
(2`+ 1)!!

2` `!
, (2`+ 1)!! ≡ (2`+ 1)(2` − 1) · · · 5 · 3 · 1

|`, `〉 =

√
(2`+ 1)!!

2` `!

1√
4π

ei`φ sin` θ

#19 : GRADUATE MATH METHODS

PROBLEM: A mathematical function has the integral representation

Fν(x) = 1
2

(x
2

)ν
∫ ∞

0
exp(−t− x2

4t
)t−ν−1dt,

where ν and x may be regarded as real, positive numbers.

With ν fixed, determine the asymptotic behavior of this function for x� 1.
SOLUTION: For large x note that exp(−t− x2

4t ) has a maximum at t0 = 1
2x.

Set t = 1
2x(1 + u) and expand (1 + u)−1 in the exponent to find

Fν(x) = 1
2

∫ ∞

−1
exp[−1

2x(1 + u+ (1 − u+ u2 − u3 + . . . ))](1 + u)−ν−1du.

For large x the integrand has an effective u range which is O(1/
√
x) � 1

around zero. Therefore,

Fν(x) ≈ 1
2e

−x

∫ ∞

−∞
e−

1
2xu2

du =

√
π

2x
e−x,

independent of ν. (The function in question is the modified Bessel function
Kν(x).)

#20 : GRADUATE GENERAL
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PROBLEM:

Consider a small hole in the top of a container (with outward normal ẑ)
containing a gas. Suppose the temperature of the gas is T , each molecule
has mass m, and the number of molecules per unit volume is N .

(a) Note that the velocity distribution of particles exiting (“effusing”) out
of the hole differs from that inside the container. Considering the number of
particles exiting the hole in time ∆t, you’ll see that the velocity distribution
of particles exiting the hole is that inside the container, weighted by the
flux. Faster particles are more likely to get out of the hole. Give the velocity
distribution of particles effusing out of the hole, making sure it’s correctly
normalized.

(b) Calculate the mean upward speed 〈vz〉 of the the molecules leaving the
container. Also compute

〈
v2
z

〉
(note that it’s indeed greater than

〈
v2
z

〉
inside

the container, which is given by equipartition).

Hint: In doing integrals you might remember the Gamma function Γ(z) =
2
∫ ∞
0 exp(−t2)t2z−1dt, and Γ(1/2) =

√
π, Γ(1) = 1, Γ(z + 1) = zΓ(z).

SOLUTION:

Assume inside the container that the gas molecules obey the Maxwell-
Boltzmann distribution. The distribution of the effusing molecules is weighted
by the flux, i.e. an additional factor of vz for vz > 0, and it vanishes for
vz < 0.

(a) So the distribution for vz > 0 is: (m2/2πk2T 2)vz exp(−mv2/2kT )d3v,
where the prefactor ensures that it’s properly normalized to integrate to 1.

(b) Integrating vz times the velocity distribution gives 〈vz〉 = (πkT/2m)1/2.
Doing the integral for v2

z gives
〈
v2
z

〉
= 2kT/m, which is indeed a factor of

two greater than that inside the container (it’s kT/m inside the container).


