
INSTRUCTIONS
PART I : PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. (E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks, ) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.
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#1: UNDERGRAD MECHANICS

PROBLEM: A man standing on earth bends his knees, lowering his center of
mass 50 cm. Then he jumps up, raising his center of mass 60 cm above its
initial position (i.e. 110 cm above its lowered position). What would be
the height of the jump on the moon. Assume that the man exerts the same
constant force until he leaves the ground when jumping on the earth and
on the moon. The moon radius is 0.275 of the earth radius and the moon
density is 0.604 of the earth density.
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#2: UNDERGRAD MECHANICS

PROBLEM:

Consider two famous experiments that determined the size and mass of the
Earth:

(A) Around 235 BC Eratosthenes conducted the following experiment. On
June 22 in Syene, Egypt, the sun was directly overhead. A stick planted
vertically in the ground in Syene cast no shadow, but a stick planted verti-
cally in Alexandria, a city 800 kilometers north of Syene over flat ground,
cast a shadow 1/8 the height of the stick. Determine the radius of the earth
from this measurement.

(B) In 1798 Cavendish reported a determination of the mass of the Earth. At
the time, Newton’s law of gravity was known but the Gravitational constant
G was not accurately known. The acceleration of the gravity near the surface
of the Earth was known to be 9.8 m/s/s. The experiment consisted of a 1.8
m wood rod, of negligible weight, suspended from a wire with a 0.73 kg lead
ball attached to each end. Two 158 kg lead balls could be placed near the
smaller balls on alternate sides of the rod. The faint gravitational attraction
between the small and large balls caused the arm to rotate, twisting the wire.
When the rod was disturbed it was observed to oscillate with a period of
about 15 minutes. When large balls were placed 0.23 m away from the
smaller balls (center-to-center distance), the rod rotated until the smaller
balls were pulled 4.1 mm closer to the larger balls. Determine the mass of
the earth from this measurement.
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#3: UNDERGRAD E&M

PROBLEM: A spherical capacitor consists of two concentric spheres or radii
a and b, a < b. The charge on the inner and outer spheres, Q(t) and −Q(t)
respectively, decreases with time as radial current runs through the material
between the spheres (which has dielectric constant ε and permittivity µ.)
Find E(r, t) and B(r, t) due to Q.
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#4: UNDERGRAD E&M

PROBLEM: A thin electrically insulating sheet of material has thickness d

and lateral extent L × L, where d � L. It is in a vacuum and isolated
from external electric fields. It has frozen-in polarization per unit volume
�P oriented in the (x,z) plane at an angle θ to the normal to the surfaces,
which is in the ẑ direction.
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Find the magnitudes and directions of the electric displacement �D and the
electric field �E both inside and outside the material, stating clearly your
reasoning.
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#5: UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Consider two entangled spin 1/2 particles separated by a large
distance. The four Bell states are given as,

|Φ(AB)
± � = 1√

2
(|z+, z+�± |z−, z−�) ,

|Ψ(AB)
± � = 1√

2
(|z+, z−�± |z−, z+�) ,

where |z±� are the two spin states along or against the z axis, the first z±
refers to particle A which is nearby, and the second z± refers to particle B
which is far away. Consider applying a magnetic field only at location A,
either in the x̂ or ẑ directions for a time t.

(a) Write down the Hamiltonians, Hz and Hx for the two operations above,
and also write down the time evolution operators, Uz(t, 0) and Ux(t, 0).

(b) Find a time duration, tA, which results in Uz|z+� = −i|z+�.

(c) Using time, tA, find Uz|z−�, and Ux|z±� (Hint: you might need to change
from the |z±� basis to the |x±� basis.

(d) Using the two operations above show that any one of the Bell states can
be transformed into any other, operating only at location A.
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#6: UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: (a) The ground state wave function of the one dimensional har-
monic oscillator (Hamiltonian: Hharm = p2

2m + 1
2mω

2
x

2) has the Gaussian
form Ψ(x) = C e

−k2x2 . Using Schrodinger’s Equation, find k, and also find
the ground state energy E0. Show all steps.

(b)Use first order perturbation theory to find the first order correction, ∆E,
to the ground state energy given by a perturbation to the potential, Hpert =
λ|x|, with λ a constant, and Htot = Hharm + Hpert.

Hint:
∞�

−∞
dx e

−x2 =
√

π.
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#7: UNDERGRAD STAT MECH/THERMO

PROBLEM:

The water-steam system shown above is in equilibrium. The temperature is
T = 2000

C. The piston can move freely and the external pressure (provided
by the weight on top of the piston plus the atmospheric pressure) balances
the steam pressure. There is 1 mol of water and 1 mol of steam initially.
The latent heat of vaporization of water at this temperature is 38,090 J/mol.
The gas constant is R=8.31J/mol/K. Assume throughout this problem that
the temperature dependence of the latent heat can be neglected.

(a) Assume the temperature is lowered to T = 1800
C. When the system

reaches equilibrium, how much water and how much steam is there? Note:
energy can flow in or out of the system (as heat and/or work) in this process,
the external pressure doesn’t change, and the piston can move freely.

(b) Same as (a) if instead the temperature is raised to T = 2200
C.

(c) Instead of changing the temperature, 20,000 J of heat are added to the
system, with the temperature fixed at T = 2000

C and the piston free to
move. How much water and how much steam is there when the system
reaches equilibrium?

(d) Assume now the piston is clamped into position and cannot move, so the
volume occupied by the system doesn’t change. The temperature is raised
from T = 2000

C to T = 2200
C by adding heat to the system. Calculate

how much water and steam there is when the system reaches equilibrium,
in moles. Assume the steam behaves like an ideal gas, and that the volume
occupied by the water can be neglected since it is much smaller than that
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of the steam. Use the Clausius-Clapeyron equation

dP
dT = L

T∆V (1)
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#8: UNDERGRADUATE STAT MECH

PROBLEM:

Herpes viruses of mass m and density ρ are suspended in water (density ρw),
placed in a tube, and spun at ω radians per second in a centrifuge. After
centrifuging for a long time the suspension reaches thermal equilibrium.
The acceleration due to the Earth’s gravity is negligible compared with the
centrifugal acceleration. If the end of the centrifuge tube is at radius r0 from
the axis of rotation (the largest radius the viruses can reach) what is the
equilibrium distribution of concentration of the viruses at radius r relative
to that at r0?
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#9: UNDERGRADUATE MATH

PROBLEM:

The unit vector �n points with equal probability in any direction in three
dimensions. Calculate the average values of (�a ·�n)2, (�a ·�n)(�b ·�n), and (�a ·�n)�n
where �a and �b are fixed vectors during the averaging.

hint: The tensor ninj is the same (invariant) in every coordinate system due
to the averaging.



CODE NUMBER: ————– SCORE: ———— 11

#10: UNDERGRADUATE GENERAL PHYSICS

PROBLEM:

On a clear night in San Diego, surfaces exposed to the sky can become sig-
nificantly colder than the ambient air. This can lead to frost even when the
temperature remains well above freezing. Consider a thin sheet of horizontal
material suspended in the air, perhaps acting as a patio shade. The material
is opaque and has a high infrared emissivity. Both parts of the problem seek
numerical answers. Estimate reasonable values where needed, and see the
hints below.

(i) Estimate the equilibrium temperature decrement of the material ex-
posed to the clear night sky, relative to the ambient air. Assume the
terrestrial surroundings are all at the ambient air temperature.

(ii) Once the surface cools to the dewpoint, water will begin to condense,
depositing heat as it does so and effectively holding the surface at the
dewpoint. If the dewpoint is 5 K below the ambient air temperature,
how much water per hour (in millimeters of height) will collect on the
surface, and how many liters per night might one collect per square
meter of surface?

Hints and Additional Information: Convection in relatively still air ex-
changes 5 W m−2K−1 at each air-material interface; Greenhouse gases pre-
vent the sky from looking like the few ◦K cosmos beyond, effectively cutting
the net outbound radiation in half; It helps to linearize the radiative piece
for parts of the problem when ∆T is small; σ = 5.67 × 10−8 W m−2K−4;
Properties of water at the temperatures of interest: specific heat capacity
4184 J kg−1K−1; heat of fusion 334 J g−1; heat of vaporization 2500 J g−1;
density 1000 kg m−3.
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#11: GRADUATE MECHANICS

PROBLEM: A particle of mass m is constrained to move on the surface of a
cylinder of radius R. The Lagrangian of the particle is

L =
1
2
m(R2

φ̇
2 + ż

2)− 1
2
k(R2 + z

2).

(a) Find the Hamiltonian corresponding to this Lagrangian.

(b) Derive Hamilton’s equations of motion for the particle from the Hamil-
tonian in part (a). Find the solutions z(t), pz(t), φ(t) and pφ(t) to the
equations of motion in terms of initial value data z(0), pz(0), φ(0), pφ(0).

(c) Find at least two constants of the motion.

(d) Find a canonical transformation to new canonical variables such that
the new canonical momenta are constants.

Hint: �
dy�

a2 − y2
= sin−1 y

a
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#12: GRADUATE MECHANICS

PROBLEM: Starting from rest at (x, y) = (0, 0), a particle slides down a
frictionless hill whose shape is given by the equation y = −ax

n, a > 0 and
n > 0. Determine the range of allowed n for which the particle leaves the
surface, and the x location at which this occurs. Assume gravity is constant,
in the −y direction.
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#13: GRADUATE E & M

PROBLEM: The figure below shows a cross sectional cut through a torus of
magnetic material. The torus is symmetric under rotation around the z-
axis and has minor radius a and major radius R. The material carries
magnetization M = M0θ̂, where M0 is a constant and θ is the cylindrical
coordinate.

(a) Find B and H in the torus.

(b) Suppose the torus were cut in half along the plane x = 0, opening up
a very thin vacuum gap. What force would the two halves exert on one
another and would the force be attractive or repulsive?

(c) Suppose the torus were cut in half along the plane z = 0. What force
would the two halves exert on one another and would the force be attractive
or repulsive?
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#14: GRADUATE E & M

PROBLEM: An electromagnetic wave,

E(r, t) = ReE0 e
ik·r−iωt

,

is incident on a small dielectric sphere of radius R and dielectric constant
�, where kR � 1. Determine the differential scattering cross section for the
scattered radiation.
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#15: GRADUATE QUANTUM MECHANICS

PROBLEM: Consider a non-relativistic particle of mass m and charge e, in the
external fields �E = E�z and �B = B�y, where E and B are constants.

(a) Write the hamiltonian in the gauge where �A has only �x component non-
zero, and verify that it has translation symmetry in two of the coordinates
(which two?). [2 points]

(b) What are the corresponding conserved quantities? [1 point]

(c) Write the corresponding form of the wavefunction ψ(x, y, z) using separa-
tion of variables, so they’re eigenstates of the above two conserved quantities.
Show that this ψ(x, y, z) reduces the Schrodinger equation to that of a 1d
problem, in the one coordinate that does not have translation invariance. [2
points]

(d) Use [H,x] to compute ẋ. Is px = mẋ? [1 point]

(e) Show that for a cleverly chosen shift in one of the spatial coordinates,
you can reduce the remaining 1d Hamiltonian to one what you know very
well. In this way, find the quantized energy levels, and in particular the
spacing between them. [4 points].
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#16: GRADUATE QUANTUM MECHANICS

PROBLEM: Consider a (non-relativistic) particle of mass m in the 1d potential

V (x) =

�
∞ x < 0
cx x ≥ 0.

.

(a) Use the uncertainty principle to estimate the groundstate energy and
characteristic length scale.

(b) Use the variational principle, with xe
−ax as the trial function, to estimate

the groundstate energy and characteristic length scale. (You’ll get a fair
amount of partial credit for clearly setting up the calculation.)
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#17: GRADUATE STAT MECH

PROBLEM:

For a two-dimensional ideal free Fermi gas, find the temperature T0 at which
the chemical potential of the system is zero, expressed in terms of the Fermi
temperature TF .

Hint: The chemical potential at zero temperature is kBTF , with kB = Boltz-
mann’s constant.
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#18: GRADUATE STAT MECH

PROBLEM: Consider an ultra-relativistic ideal gas of N indistinguishable spin
zero particles moving in three dimensions, for which the particle energy is
E = pc where p is the magnitude of the momentum.

(a) Calculate the mean energy U(T, V,N) in the classical limit

(b) Find the critical temperature T as a function of particle density N/V

for Bose-Einstein condensation

Hint: �
dxx

2
e
−x = Γ(3),

�
dxx

2
/(ex − 1) = ζ(3)
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#19: GRADUATE MATH

PROBLEM:

Consider a heat equation in a two-dimensional strip
�

∂
∂t −D

�
∂2

∂x2 + ∂2

∂z2

��
T (t, x) = Q(t, x) , 0 < z < d , −∞ < x <∞ .

The two sides z = 0, d of the strip are maintained at zero temperature. An
instantaneous heat pulse Q(x, t) = δ(t)δ(x)δ(z − d/2) is delivered to the
center of the strip at t = 0. An observer at some large distance x∗ sees the
temperature rise and fall as a function of time. Find the time t∗ at which
the maximum temperature is observed. Hint : t∗ is determined by the least
rapidly decaying eigenfunction of the heat equation.
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#20: GRADUATE GENERAL PHYSICS

PROBLEM:

Use simple kinetic theory to approximate the specific heat capacity of a basic
substance of your choosing—solid, liquid, or gas (just don’t use the ideal
gas law in the latter case). Assume the nuclei in the substance have mass
number, A. Evaluate your expression numerically to produce a number
with units of J kg−1K−1. We’re only after factor-of-two accuracy here.

Hint : If you don’t know the numerical value of Boltzmann’s constant, k,
you can likely think of a number of physics factoids that can lead you to a
reasonable value.
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#1: UNDERGRAD MECHANICS

PROBLEM: A man standing on earth bends his knees, lowering his center of
mass 50 cm. Then he jumps up, raising his center of mass 60 cm above its
initial position (i.e. 110 cm above its lowered position). What would be
the height of the jump on the moon. Assume that the man exerts the same
constant force until he leaves the ground when jumping on the earth and
on the moon. The moon radius is 0.275 of the earth radius and the moon
density is 0.604 of the earth density.

SOLUTION:

The acceleration of gravity on earth is

ge = Gme/r
2
e = G(4

3πr
3
eρe)/r

2
e = 4

3Gπreρe,

where G is the gravitational constant, me is the earth mass, re is the earth
radius, ρe is the earth density. The acceleration of gravity on the moon is

gm = 4
3Gπrmρm = germρm/(reρe) ≈ ge/6,

where rm is the moon radius, ρm is the moon density.

Since the force is the same on earth as on the moon, the work done is the
same, and mgm(hm + 50) = mge(he + 50), where m is the man mass and
hm and he are the heights of the jump on the moon and earth, respectively.
For he = 60 cm, we find hm = 6.1 m.
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#2: UNDERGRAD MECHANICS

PROBLEM:

Consider two famous experiments that determined the size and mass of the
Earth:

(A) Around 235 BC Eratosthenes conducted the following experiment. On
June 22 in Syene, Egypt, the sun was directly overhead. A stick planted
vertically in the ground in Syene cast no shadow, but a stick planted verti-
cally in Alexandria, a city 800 kilometers north of Syene over flat ground,
cast a shadow 1/8 the height of the stick. Determine the radius of the earth
from this measurement.

(B) In 1798 Cavendish reported a determination of the mass of the Earth. At
the time, Newton’s law of gravity was known but the Gravitational constant
G was not accurately known. The acceleration of the gravity near the surface
of the Earth was known to be 9.8 m/s/s. The experiment consisted of a 1.8
m wood rod, of negligible weight, suspended from a wire with a 0.73 kg lead
ball attached to each end. Two 158 kg lead balls could be placed near the
smaller balls on alternate sides of the rod. The faint gravitational attraction
between the small and large balls caused the arm to rotate, twisting the wire.
When the rod was disturbed it was observed to oscillate with a period of
about 15 minutes. When large balls were placed 0.23 m away from the
smaller balls (center-to-center distance), the rod rotated until the smaller
balls were pulled 4.1 mm closer to the larger balls. Determine the mass of
the earth from this measurement.

SOLUTIONS:

(A) The shadow cast by the vertical stick in Alexandria indicates the an-
gle of the rays of sunlight relative to the Earth’s normal is equal to arc-
tan(1/8)=0.124 radians. This is ∼1/50th of a full circle (2*pi radians).
Since the vertical sticks are parallel to the Earth’s radius the distance be-
tween Syene and Alexandria must be ∼1/50th of the circumferance of the
Earth, or 800 x 50 = 40,000 km. The Earth’s radius is therefore about
40,000/2/pi = 6,400 km.

(B) The force between two lead balls is Fballs = G
m1m2

d2 , and is determined
by the experiment.
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The force between m1 and the Earth is FEarth = G
m1mEarth

r
2
Earth

= m1g =
(0.73 kg)(9.8 m/s/s) = 7.2N.

By finding the ratio Fballs
FEarth

= m2
d2

r
2
Earth

mEarth
one can determine

mEarth = FEarth
Fballs

m2
d2 r

2
Earth

without knowing G.

The experiment determines Fballs as follows. The suspended rod acts as
a torsional pendulum with equation of motion τ = −k∆θ = Iα. k is the
torsional spring constant and I = 2m1r

2 is the moment of inertia where
r = half length of the rod. The period of oscillation is T = 2π

�
I/k, which

determines k:

k = 4π
2
I

T 2 = 4π
2
m1r

2

T 2 = 8*pi2*0.73*0.92/(15*60)2=5.73e-5 (MKS units)

When the balls are pulled a distance ∆s = 4.1e− 3m closer due to gravita-
tional force this torque is balanced by the torsional spring force of the wire:
τ = 2Fballsr = −k∆θ = k(∆s/r)

Thus Fballs = k(∆s/2r
2) = (5.76e-5)(4.1e-3)/2/0.92 = 1.46e-7 N.

Using the radius of the Earth of 6,400 km found in part (A) one can thus
calculate:

mEarth = FEarth
Fballs

m2
d2 r

2
Earth

= 7.2*158*(6400e3)2/1.46e-7/0.412=6e24 kg
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#3: UNDERGRAD E&M

PROBLEM: A spherical capacitor consists of two concentric spheres or radii
a and b, a < b. The charge on the inner and outer spheres, Q(t) and −Q(t)
respectively, decreases with time as radial current runs through the material
between the spheres (which has dielectric constant ε and permittivity µ.)
Find E(r, t) and B(r, t) due to Q.

SOLUTION:

Gauss’ law implies D = Q/r
2 between the spheres so E = Q/εr

2 (in the
radial direction). The electric field is zero everywhere else by Gauss’s law.
To find B, note that the radial current density is j = −Q̇/4πr

2. However the
displacement current is also radial, and given by jD = Q̇/4πr

2 so ∇×H =
∇ × B/µ = 0, which implies B = ∇ψ for some scalar potential ψ. Since
∇ · B = 0 as well, ∇2

ψ = 0. Symmetry implies ψ is a function only of r

and t so the solution of Laplace’s equation is ψ = A + B/r. However B = 0
because this term can only be due to a magnetic monopole. (Alternate
argument: The integral constraint

�
B · n̂ d

2
r = 0 implies B = 0). Therefore

B = 0 everywhere.
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#4: UNDERGRAD E&M

PROBLEM: A thin electrically insulating sheet of material has thickness d

and lateral extent L × L, where d � L. It is in a vacuum and isolated
from external electric fields. It has frozen-in polarization per unit volume
�P oriented in the (x,z) plane at an angle θ to the normal to the surfaces,
which is in the ẑ direction.

 
 
 
 
 

P 
z 

x ! 

Find the magnitudes and directions of the electric displacement �D and the
electric field �E both inside and outside the material, stating clearly your
reasoning.

SOLUTION:

Bound charge on upper face:

σ = P · n̂ = P cos θ

Bound charge on lower face is opposite, implying an electric field within the
material from Gauss’s law:

E = − σ

�0
ẑ = − P

ε0
cos θẑ

Electric displacement within the material:

D = ε0 E + P = −P cos θẑ + P (sin θx̂ + cos θẑ) = P sin θx̂

Outside, E = P = 0 so D = 0.
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#5: UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Consider two entangled spin 1/2 particles separated by a large
distance. The four Bell states are given as,

|Φ(AB)
± � = 1√

2
(|z+, z+�± |z−, z−�) ,

|Ψ(AB)
± � = 1√

2
(|z+, z−�± |z−, z+�) ,

where |z±� are the two spin states along or against the z axis, the first z±
refers to particle A which is nearby, and the second z± refers to particle B
which is far away. Consider applying a magnetic field only at location A,
either in the x̂ or ẑ directions for a time t.

(a) Write down the Hamiltonians, Hz and Hx for the two operations above,
and also write down the time evolution operators, Uz(t, 0) and Ux(t, 0).

(b) Find a time duration, tA, which results in Uz|z+� = −i|z+�.

(c) Using time, tA, find Uz|z−�, and Ux|z±� (Hint: you might need to change
from the |z±� basis to the |x±� basis.

(d) Using the two operations above show that any one of the Bell states can
be transformed into any other, operating only at location A.

SOLUTION:

(a) The Hamiltonian H = −�µ · �B only acts on particle A; particle B is
unaffected. Hz = ωSz, with ω = |e|Bz/mec, where Sz|z±� = ±�

2 |z±�.
The time evolotion operator is U(t, 0) = e

−iHt/�, so Uz = e
−iωtSz/� and

Ux = e
−iωtSx/�.

(b) Uz|z+� = e
−iωt/2|z+�, so choose ωtA = π, so Uz(tA) = e

−iπ/2 = −i.

(c) Uz|z−� = e
iπ/2|z−� = i|z−�. Write |z±� = 1√

2
(|x+� ± |x−�), then

Ux|z±� = −i|z∓�.
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Hence, using the the above on the Bell states,

Uz|Φ(AB)
+ � = −i|Φ(AB)

− �,

Uz|Ψ(AB)
+ � = −i|Ψ(AB)

− �,

Ux|Φ(AB)
+ � = −i|Ψ(AB)

+ �,

Ux|Φ(AB)
− � = i|Ψ(AB)

− �.

These together with the inverse transforms will link any Bell state to an-
other.
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#6: UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: (a) The ground state wave function of the one dimensional har-
monic oscillator (Hamiltonian: Hharm = p

2

2m
+ 1

2mω
2
x

2) has the Gaussian
form Ψ(x) = C e

−k
2
x
2 . Using Schrodinger’s Equation, find k, and also find

the ground state energy E0. Show all steps.

(b)Use first order perturbation theory to find the first order correction, ∆E,
to the ground state energy given by a perturbation to the potential, Hpert =
λ|x|, with λ a constant, and Htot = Hharm + Hpert.

Hint:
∞�

−∞
dx e

−x
2 =

√
π.

SOLUTION:

(a) The 1-D harmonic oscillator has ground state wave function that satisfies
− �2

2m

∂
2Ψ

∂x2 +1
2mω

2
x

2Ψ = E0Ψ. Substituting the trial form Ψ = C e
−k

2
x
2 yields

− �2

2m
(4k

4
x

2 − 2k
2) + 1

2mω
2
x

2 = E0.

Balancing terms yields k
4 = m

2
ω

2

4�2 .

Also, E0 = �2
k
2

m
= �ω

2 . Thus, Ψ(x) = 1
π1/4√x0

e
− x2

2x2
0 , with x0 =

�
�/mω.

This form is normalized such that
�

|Ψ(x)|2dx = 1.

(b) ∆E =
�∞
−∞Ψ∗(x)HpertΨ(x)dx. That is, ∆E =

�∞
−∞

λ

π1/2x0
|x|e−x

2
/x

2
0dx.

The integral can be performed using elementary methods, yielding ∆E =
λx0/

√
π.
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#7: UNDERGRAD STAT MECH/THERMO

PROBLEM:

The water-steam system shown above is in equilibrium. The temperature is
T = 2000

C. The piston can move freely and the external pressure (provided
by the weight on top of the piston plus the atmospheric pressure) balances
the steam pressure. There is 1 mol of water and 1 mol of steam initially.
The latent heat of vaporization of water at this temperature is 38,090 J/mol.
The gas constant is R=8.31J/mol/K. Assume throughout this problem that
the temperature dependence of the latent heat can be neglected.

(a) Assume the temperature is lowered to T = 1800
C. When the system

reaches equilibrium, how much water and how much steam is there? Note:
energy can flow in or out of the system (as heat and/or work) in this process,
the external pressure doesn’t change, and the piston can move freely.

(b) Same as (a) if instead the temperature is raised to T = 2200
C.

(c) Instead of changing the temperature, 20,000 J of heat are added to the
system, with the temperature fixed at T = 2000

C and the piston free to
move. How much water and how much steam is there when the system
reaches equilibrium?

(d) Assume now the piston is clamped into position and cannot move, so the
volume occupied by the system doesn’t change. The temperature is raised
from T = 2000

C to T = 2200
C by adding heat to the system. Calculate

how much water and steam there is when the system reaches equilibrium,
in moles. Assume the steam behaves like an ideal gas, and that the volume
occupied by the water can be neglected since it is much smaller than that
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of the steam. Use the Clausius-Clapeyron equation

dP

dT
= L

T∆V
(1)

SOLUTION:

(a) For each value of the temperature there is one value of the pressure
where the two phases coexist, determined by the condition

gliquid(T, P ) = gvapor(T, P ) (2)

with g the Gibbs free energy per mol. Since the external pressure doesn’t
change, there cannot be coexistence at the lower temperature. Therefore
all the steam condenses into liquid water and the piston moves all the way
down to the surface of the water.

(b) Similarly, at the higher temperature all the water evaporates.

(c) The heat goes both into latent heat of vaporization, converting some
liquid to gas, and into work for lifting the piston. The work done is

W = P0(V − V0) = RT0(n− n0) (3)

with P0 the external pressure. So, with L the latent heat of vaporization
per mol:

Q = 20, 000J = L(n− n0) + RT0(n− n0) = (L + RT0)(n− n0)
= (38, 090 + 8.31× 473)(n− n0)J = 41, 522(n− n0)J (4)

with n0 and n the initial and final number of moles of vapor. Hence,

n− n0 = 0.48 (5)

so that 0.48 mols of water evaporate, and there are 0.52 moles of water and
1.48 moles of vapor at the end of the process.

(d) The Clausius-Clapeyron eq. yields for the coexistence condition, using
the eq. of state for the ideal gas and neglecting the volume occupied by the
water:

P = Ce
−L/RT (6)

where C is a constant. So we have initially

P0 = Ce
−L/RT0 (7)
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with T0 = 4730
Kand at the end

P1 = Ce
−L/RT1 (8)

with T1 = 4930
K. So

P1 = P0e
L

R
(

1
T0
− 1

T1
) (9)

L

R
( 1

T0
− 1

T1
) = 38,090

8.31 ( 1
473 −

1
493) = 0.393 (10)

Hence
P1 = e

0.393
P0 = 1.48P0 (11)

From PV = nRT and with initially n0 = 1mol,

n1 = P1V

RT1
= P1

P0

T0
T1

n0 = 1.48× 473
493n0 = 1.42n0 (12)

So there are 0.58 moles of water and 1.42 moles of vapor when the system
reaches equilibrium.



CODE NUMBER: ————– SCORE: ———— 12

#8: UNDERGRADUATE STAT MECH

PROBLEM:

Herpes viruses of mass m and density ρ are suspended in water (density ρw),
placed in a tube, and spun at ω radians per second in a centrifuge. After
centrifuging for a long time the suspension reaches thermal equilibrium.
The acceleration due to the Earth’s gravity is negligible compared with the
centrifugal acceleration. If the end of the centrifuge tube is at radius r0 from
the axis of rotation (the largest radius the viruses can reach) what is the
equilibrium distribution of concentration of the viruses at radius r relative
to that at r0?

SOLUTION:

The net force on an object of mass m floating in water at radius r is the
centrifugal force on the object minus the buoyant force, which equals the cen-
trifugal force on the mass of water mw displaced by the object (Archimedes
principle):

F = mω
2
r −mwω

2
r = (m−mw)ω2

In terms of densities m −mw = m − (ρw/ρ)m = m(1 − ρw/ρ); call this m
�

(the effective mass)

The potential energy of an object at r relative to r0 is equal to the work
required to move the objecg from r0 to r against the net force:

E(r)− E(r0) = −
r�

r0

m
�
ω

2
r dr = m

�
ω

2(r2
0 − r

2)/2

At thermal equilibrium the probability of finding a particle in state i of En-
ergy Ei relative to state j of energy Ej is given by the Boltzmann equation:

Pi
Pj

= exp(−(Ei − Ej)/kT )

The concentration at radius r relative to that at r0 is thus

C(r)
C(r0) = exp(−m

�
ω

2(r2
0 − r

2)/2kT )
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#9: UNDERGRADUATE MATH

PROBLEM:

The unit vector �n points with equal probability in any direction in three
dimensions. Calculate the average values of (�a ·�n)2, (�a ·�n)(�b ·�n), and (�a ·�n)�n
where �a and �b are fixed vectors during the averaging.

hint: The tensor ninj is the same (invariant) in every coordinate system due
to the averaging.

SOLUTION:

All averages can be reduced to the average of ninj which has to be of the
form

ninj = λ · δij .

Let us choose i = j and sum over i:

3�

i=1

nini = �n2 = 1 = 1 = 3λ,

so that

ninj = 1
3 · δij .

With this we have

(�a · �n)2 =
�

i,j

ainiajnj =
�

i,j

aiajninj =
�

i,j

= 1
3δijaiaj = a

2
/3;

(�a · �n)(�b · �n) = �a ·�b/3;

(�a · �n)�n = �a/3 .
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#10: UNDERGRADUATE GENERAL PHYSICS

PROBLEM:

On a clear night in San Diego, surfaces exposed to the sky can become sig-
nificantly colder than the ambient air. This can lead to frost even when the
temperature remains well above freezing. Consider a thin sheet of horizontal
material suspended in the air, perhaps acting as a patio shade. The material
is opaque and has a high infrared emissivity. Both parts of the problem seek
numerical answers. Estimate reasonable values where needed, and see the
hints below.

(i) Estimate the equilibrium temperature decrement of the material ex-
posed to the clear night sky, relative to the ambient air. Assume the
terrestrial surroundings are all at the ambient air temperature.

(ii) Once the surface cools to the dewpoint, water will begin to condense,
depositing heat as it does so and effectively holding the surface at the
dewpoint. If the dewpoint is 5 K below the ambient air temperature,
how much water per hour (in millimeters of height) will collect on the
surface, and how many liters per night might one collect per square
meter of surface?

Hints and Additional Information: Convection in relatively still air ex-
changes 5 W m−2K−1 at each air-material interface; Greenhouse gases pre-
vent the sky from looking like the few ◦K cosmos beyond, effectively cutting
the net outbound radiation in half; It helps to linearize the radiative piece
for parts of the problem when ∆T is small; σ = 5.67 × 10−8 W m−2K−4;
Properties of water at the temperatures of interest: specific heat capacity
4184 J kg−1K−1; heat of fusion 334 J g−1; heat of vaporization 2500 J g−1;
density 1000 kg m−3.

SOLUTION:

(i) For each square meter of surface, convection acts on both the top and
bottom, adding to 10 W times ∆T . Linearizing the radiated power
leads to P/A = 4σT

3∆T . At a typical nighttime temperature of 280 K,
this yields 4×5×10−8×2803∆T ≈ 5.0∆T W m−2 (numerical factor is
6.1 for T = 300 K). The material will be cooler than the surroundings,
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so the net power into each square meter of the material from the local
environment is 10∆T W for convection (both sides) plus 5∆T W via
radiative coupling to the ground below (bottom only).

For radiation to the sky, we cannot use the linearized relation, and
are told that the net outbound radiation is half what it would be to
a 0 K background. For 280 K, σT

4 ∼ 350 W m−2 (460 W m−2 for
T = 300 K), so the net loss per square meter is 175 W (230 W). Really,
the effective blackbody temperature for a dry sky is about 235 K, so
the 175 W turns out to be about right for T = 280 K.

Setting 175 W = 10∆T + 5∆T , we find that ∆T ∼ 12 K.

(ii) Using the results above, if condensation parks the material at ∆T =
5 K, for every square meter, we have the convection part contributing
50 W and radiation to the ground contributing an additional 25 W. As
before, the net skyward radiation is 175 W, leaving 100 W contributed
by condensation for each square meter. Since each condensed gram
deposits 2500 J, one gram may be deposited every 25 seconds, and
144 grams every hour. At a density of 1 g cm−3, this amounts to a
layer 0.14 mm thick each hour. Over the course of a 12 hour night,
one might expect a maximum of 1.7 liters of condensation per square
meter of roof.
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#11: GRADUATE MECHANICS

PROBLEM: A particle of mass m is constrained to move on the surface of a
cylinder of radius R. The Lagrangian of the particle is

L =
1
2
m(R2

φ̇
2 + ż

2)− 1
2
k(R2 + z

2).

(a) Find the Hamiltonian corresponding to this Lagrangian.

(b) Derive Hamilton’s equations of motion for the particle from the Hamil-
tonian in part (a). Find the solutions z(t), pz(t), φ(t) and pφ(t) to the
equations of motion in terms of initial value data z(0), pz(0), φ(0), pφ(0).

(c) Find at least two constants of the motion.

(d) Find a canonical transformation to new canonical variables such that
the new canonical momenta are constants.

Hint: �
dy�

a2 − y2
= sin−1 y

a

SOLUTION:

(a)

pφ =
∂L

∂φ̇
= mR

2
φ̇

pz =
∂L

∂ż
= mż

H = pz ż + pφφ̇− L =
p
2
z

2m
+

p
2
φ

2mR2
+

1
2
k(R2 + z

2)

(b)

ż =
∂H

∂pz

=
pz

m
, ṗz = −∂H

∂z
= −kz

φ̇ =
∂H

∂pφ

=
pφ

mR2
, ṗφ = −∂H

∂φ
= 0

pφ(t) = constant = pφ(0)



CODE NUMBER: ————– SCORE: ———— 17

φ(t) =
pφ(0)
mR2

t + φ(0)

z(t) = z(0) cos ωt +
pz(0)
mω

sin ωt

pz(t) = −mωz(0) sinωt + pz(0) cos ωt

(c) Two constants of the motion are pφ and H.

ṗφ = [pφ, H] = 0

Ḣ = [H,H] = 0

Hz ≡ p
2
z

2m
+ 1

2kz
2 = Ez and Hφ ≡

p
2
φ

2m
= Eφ also are constants of the motion:

[Hz, H] = 0

[Hφ, H] = 0

(d) Canonical momentum pφ is already a constant of the motion, so only need
to perform nontrivial canonical transformation to new Pz which is a constant
of the motion. Choose Pz = Ez. Thus, canonical transformation from
(z, pz, φ, pφ) to new canonical variables (Qz, Pz, Qφ, Pφ) = (βz, Ez, φ, pφ).

S(z, φ, Ez, pφ) = Wz(z, Ez) + pφφ− Ezt

K(pφ, Ez) = H(z, pz, φ, pφ) +
∂S

∂t
=

p
2
φ

2mR2
+

1
2
kR

2

Ez =
1

2m

�
∂Wz

∂z

�2

+
1
2
mω

2
z
2

pz =
∂Wz

∂z
=

�
2mEz −m2ω2z2

Wz(z, Ez) =
�

dz

�
2mEz −m2ω2z2

Qz = βz =
∂S

∂Ez

=
∂Wz

∂Ez

−t =
�

dz
m√

2mEz −m2ω2z2
=

1
ω

sin−1




�

mω2

2Ez

z



−t

z(t) =
�

2Ez

mω2
sin (ω(t + βz))
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pz(t) =
�

2mEz cos (ω(t + βz))

where
Ez =

p
2
z(t)
2m

+
1
2
kz

2(t) =
p
2
z(0)
2m

+
1
2
kz

2(0)

pz(0)
z(0)

= mω cot(ωβz)

relate Ez and βz to initial value data.
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#12: GRADUATE MECHANICS

PROBLEM: Starting from rest at (x, y) = (0, 0), a particle slides down a
frictionless hill whose shape is given by the equation y = −ax

n, a > 0 and
n > 0. Determine the range of allowed n for which the particle leaves the
surface, and the x location at which this occurs. Assume gravity is constant,
in the −y direction.

SOLUTION:

E = 0 = 1
2m(ẋ2 + ẏ

2) + mgy

y = −ax
n ⇒ ẏ = −nax

n−1
ẋ

⇒ ẋ
2 = 2gax

n

1+n2a2x2(n−1)

Force of constraint in the x direction is Qx = mẍ = 0 if particle leaves the
surface.

2ẋ/ ẍ = ∂

∂t

�
2gax

n

1+n2a2x2(n−1)

�
= ẋ/

∂

∂x

�
2gax

n

1+n2a2x(2n−2)

�
= 0

⇒ nx
n−1

1+n2a2x2(n−1) −
2(n−1)n2

a
2
x
3n−3

(1+n2a2x2n−2)2 = 0

nx
n−1 + n

3
a

2
x

3n−3 − 2(n− 1)n2
a

2
x

3n−3 = 0

⇒ a
2
x

2n−2 = 1
n(n−2) . Real finite solution only for n > 2.
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#13: GRADUATE E & M

PROBLEM: The figure below shows a cross sectional cut through a torus of
magnetic material. The torus is symmetric under rotation around the z-
axis and has minor radius a and major radius R. The material carries
magnetization M = M0θ̂, where M0 is a constant and θ is the cylindrical
coordinate.

(a) Find B and H in the torus.

(b) Suppose the torus were cut in half along the plane x = 0, opening up
a very thin vacuum gap. What force would the two halves exert on one
another and would the force be attractive or repulsive?

(c) Suppose the torus were cut in half along the plane z = 0. What force
would the two halves exert on one another and would the force be attractive
or repulsive?

 

z 

 r 

 

E0 

 
! 

 

R 

 
a 

 

 

z 

 

y 

 

x 

 

r 

 
! 

 

SOLUTION:

(a) ∇×H = 4π

c
Jf = 0

2πrHθ =
�

H · d� = 0

Bθ = Hθ + 4πM0
�
0

(b) Normal component of B is continuous at interface between material and
vacuum gap

(Bθ)gap = (Bθ)material = 4πM0

Force = 2πa
2 (Bθ)2

8π
= 2πa

2 (4πM0)2

8π
attractive



CODE NUMBER: ————– SCORE: ———— 21

(c) Tangential component of H is continuous at the interface between ma-
terial and vacuum gap

(Bθ)gap = (Hθ)gap = (Hθ)material = 0

Therefore Force = 0
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#14: GRADUATE E & M

PROBLEM: An electromagnetic wave,

E(r, t) = ReE0 e
ik·r−iωt

,

is incident on a small dielectric sphere of radius R and dielectric constant
�, where kR� 1. Determine the differential scattering cross section for the
scattered radiation.

SOLUTION:

Can use electrostatics to calculate polarization of sphere since

kR = ω

c
R� 1

Also, wave field is uniform over scale length of sphere

φout = −E0r cos θ + A

r2 cos θ

 

z 

 r 

 

E0 

 
! 

 

R 

 
a 

 

 

z 

 

y 

 

x 

 

r 

 
! 

 

φin = Br cos θ

−E0R/ + A

R2/3 = B R/ φout(R, θ) = φin(R, θ)

�B = −E0 − 2A

R3 �
∂φin
∂r

|R = ∂φout
∂r

|R

�B = −E0 − 2A

R3 �
∂φin
∂r

|R = ∂φout
∂r

|R

�B + A

R3 = B − 2A

R3

B� + A

R3 = B − 2A

R3 − 3A

R3 = (�− 1)B

�B = −E0 + 2
3(�− 1)B , B(� + 2) = −E03

�E = −D = E + 4πP , P = 1
4π

(�− 1)E
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P = 3
4π

(�−1)
�+2 E0 ,

P = 4
3πR

3P = (�−1)
(�+2)R

3E0

� total dipole

Dipole radiation dominates

d�P �
dΩ = c

8π
k

4|P|2 sin2
θ

↑ angle between E and r

dσ

dΩ = d�P �/dΩ
(c/8π)|E0|2 = k

4
R

6 (�−1)2

(�+2)2 sin2
θ
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#15: GRADUATE QUANTUM MECHANICS

PROBLEM: Consider a non-relativistic particle of mass m and charge e, in the
external fields �E = E�z and �B = B�y, where E and B are constants.

(a) Write the hamiltonian in the gauge where �A has only �x component non-
zero, and verify that it has translation symmetry in two of the coordinates
(which two?). [2 points]

(b) What are the corresponding conserved quantities? [1 point]

(c) Write the corresponding form of the wavefunction ψ(x, y, z) using separa-
tion of variables, so they’re eigenstates of the above two conserved quantities.
Show that this ψ(x, y, z) reduces the Schrodinger equation to that of a 1d
problem, in the one coordinate that does not have translation invariance. [2
points]

(d) Use [H,x] to compute ẋ. Is px = mẋ? [1 point]

(e) Show that for a cleverly chosen shift in one of the spatial coordinates,
you can reduce the remaining 1d Hamiltonian to one what you know very
well. In this way, find the quantized energy levels, and in particular the
spacing between them. [4 points].

SOLUTION:

(a) Taking �A = Bz�x and φ = −Ez,

H =
1

2m
((px − eBz/c)2 + p

2
y + p

2
z)− eEz.

This has translation symmetry in x and y.

(b) Correspondingly, px and py are conserved.

(c) Take ψ(x, y, z) = e
i(kxx+kyy)

ψ(z), which are eigenstates of px and py,
with eigenvalues px = �kx and py = �ky Then the SE becomes

�
1

2m

�
(�kx −

e

c
Bz)2 + �2

k
2
y + p

2
z

�
− eEz

�
ψ(z) = Eψ(z).

(d) ẋ = 1
i�[x, H] = 1

m
(px − e

c
Bz). So px �= mvx. This is not a surprise:

m�v = �p − e

c
�A is where the original H came from (since �B does no work, it

doesn’t contribute to H when writing K = 1
2m�v

2).
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(e) Shift z
� = z + a to get

H
� =

1
2m

�
(�kx −

e

c
Bz

� − e

c
Ba)2 + �2

k
2
y + p

2
z

�
− eEz

� − eEa.

The terms linear in z
� can be eliminated by taking

a =
c

eB

�
�kx +

Emc

B

�
.

What’s left is a 1d SHO, with ω = eB/mc (the cyclotron frequency). The
energy levels are thus quantized like the SHO,

E = (n + 1
2)

�eB

mc
+

�2
k

2
y

2m
+

e
2
B

2
a

2

2mc2
− eEa.

The spacing is �eB/mc.
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#16: GRADUATE QUANTUM MECHANICS

PROBLEM: Consider a (non-relativistic) particle of mass m in the 1d potential

V (x) =

�
∞ x < 0
cx x ≥ 0.

.

(a) Use the uncertainty principle to estimate the groundstate energy and
characteristic length scale.

(b) Use the variational principle, with xe
−ax as the trial function, to estimate

the groundstate energy and characteristic length scale. (You’ll get a fair
amount of partial credit for clearly setting up the calculation.)

SOLUTION:

(a) Take E ≈ ∆p
2

2m
+ c∆x ≈ �2

2m∆x2 + c∆x, using ∆p∆x ∼ �. Minimizing,

the characteristic length scale is ∆x = (�2
/mc)1/3 and Emin ≈ 3

2

�
�2

c
2

m

�1/3
.

(b) The trial wavefunction gives

�E� =
� ∞

0
dxxe

−ax

�
− �2

2m

d
2

dx2
+ cx

�
xe
−ax

/

� ∞

0
dxx

2
e
−2ax

,

=
3c

2a
+

�2
a

2

2m
.

Minimizing, the characteristic size is

a
−1 =

�
2�2

3cm

�1/3

and the groundstate energy is bounded below as

Emin ≥
9
4

�
2�2

c
2

3m

�1/3

.
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#17: GRADUATE STAT MECH

PROBLEM:

For a two-dimensional ideal free Fermi gas, find the temperature T0 at which
the chemical potential of the system is zero, expressed in terms of the Fermi
temperature TF .

Hint: The chemical potential at zero temperature is kBTF , with kB = Boltz-
mann’s constant.

SOLUTION:

The density of fermions is

n =
�

d�g(�) 1
eβ(�−µ)+1

(13)

The density of states (per unit volume) g(�) of a two-dimensional free Fermi
gas is a constant independent of energy:

g(�) = C (14)

At zero temperature, calling �F the chemical potential

n =
�

�F

0
d�g(�) = C�F = CkBTF (15)

At the temperature where µ = 0,

n =
� ∞

0
d�g(�) 1

eβ�+1
=

� ∞

0
d�g(�) e

−β�

e−β�+1

= C
1
β
[−ln(e−β� + 1)]∞0 = Cln2kBT0 (16)

with β = 1/kBT0, hence

Cln2kBT0 = CkBTF (17)

and
T0 = TF /ln2 = 1.44TF (18)
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#18: GRADUATE STAT MECH

PROBLEM: Consider an ultra-relativistic ideal gas of N indistinguishable spin
zero particles moving in three dimensions, for which the particle energy is
E = pc where p is the magnitude of the momentum.

(a) Calculate the mean energy U(T, V,N) in the classical limit

(b) Find the critical temperature T as a function of particle density N/V

for Bose-Einstein condensation

Hint: �
dxx

2
e
−x = Γ(3),

�
dxx

2
/(ex − 1) = ζ(3)

SOLUTION:

(a)

H(qi, pi) =
N�

i=1

|�pi|c

Z(T, V,N) =
1

N ! h3N

�

i

�
d

3
qid

3
pie
−βH(qi,pi) =

1
N ! h3N

V
N

��
d

3
p e
−β|p|c

�N

�
d

3
p e
−β|p|c = 4π

� ∞

0
dp p

2
e
−βcp =

4π

(βc)3
Γ(3) =

8π

(βc)3

Z(T, V,N) =
1

N ! h3N

�
8πV

(βc)3

�N

=
1

N !

�
8πV

�
kT

hc

�3
�N

F (T, V,N) = −kT lnZ = −kT

�
N ln

�
8πV

�
kT

hc

�3
�
− lnN !

�

F (T, V,N) = −NkT

�
1 + ln

�
8πV

N

�
kT

hc

�3
��

S = −
�

∂F

∂T

�

V,N

= Nk

�
4 + ln

�
8πV

N

�
kT

hc

�3
��

U(T, V,N) = F + TS = 3NkT
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or

U = −∂ lnZ

∂β
= T

2 ∂ lnZ

∂T

(b)

< N >=
�

allstates

1
eβ(pc+µ) − 1

= V

�
d

3
k

(2π)3
1

eβ(�ck+µ) − 1
+ N0

where N0 is the number of particles in the ground state (k = 0). Scaling k

by β�c we write this as

N = V
4π

(2π)3
T

3

(�c)3

�
dxx

2 1
ex+βµ − 1

+ N0

The integral has a maximum possible valueof ζ(3) at µ = 0 implying a
transition temperature of

T = �c(
2π

2
N

(ζ(3)V )
)1/3
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#19: GRADUATE MATH

PROBLEM:

Consider a heat equation in a two-dimensional strip
�

∂

∂t
−D

�
∂
2

∂x2 + ∂
2

∂z2

��
T (t, x) = Q(t, x) , 0 < z < d , −∞ < x <∞ .

The two sides z = 0, d of the strip are maintained at zero temperature. An
instantaneous heat pulse Q(x, t) = δ(t)δ(x)δ(z − d/2) is delivered to the
center of the strip at t = 0. An observer at some large distance x∗ sees the
temperature rise and fall as a function of time. Find the time t∗ at which
the maximum temperature is observed. Hint : t∗ is determined by the least
rapidly decaying eigenfunction of the heat equation.

SOLUTION:

�
∂

∂t
−D

�
∂
2

∂x2 + ∂

∂z2

��
T = δ(t)δ(x)δ(z − d

2)

write solution as T =
∞�

n=1

�
dk

2π
fn(t, k) sin nπz

d
e
ikx

⇒ ∂fn
∂t

+ D

�
k

2 + n
2
π

2

d2

�
fn = δ(t)2

d
sin nπ

2

Solution is

fn = 2
d

sin nπ

2 e
−D(k2+n

2
π

2
/d

2)t

so T (x, z, t) =
∞�

n=1

2
d

sin nπz

d
sin nπ

2

�
dk

2π
e
−D(k2+n

2
π

2
/d

2)t+ikx

�

1
2
√

πDt
e
−D (n2

π
2
t/d

2)
e
−x

2
/4Dt

Time dependence at large times, large x is dominated by n = 1 exponential
term

e
−(Dπ

2
t/d

2)−x
2
/4Dt.

This has a maximum at t = d

2πD
x .
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#20: GRADUATE GENERAL PHYSICS

PROBLEM:

Use simple kinetic theory to approximate the specific heat capacity of a basic
substance of your choosing—solid, liquid, or gas (just don’t use the ideal
gas law in the latter case). Assume the nuclei in the substance have mass
number, A. Evaluate your expression numerically to produce a number
with units of J kg−1K−1. We’re only after factor-of-two accuracy here.

Hint : If you don’t know the numerical value of Boltzmann’s constant, k,
you can likely think of a number of physics factoids that can lead you to a
reasonable value.

SOLUTION:

Forgetting small factors that may differ in different phases, the thermal
energy per particle will be about 3

2kT . Thus the heat capacity per particle
is just 3

2k.

The only remaining step is to figure out the number of particles per kilogram.
This can be determined either as NA/(1000 · A), where NA is Avogadro’s
number, 6 × 1023, and A is the atomic number, or grams per mole—thus
requiring the factor of 1000. Or one could recall that the atomic mass unit is
a = 1.66×10−27 kg, so that the number of particles per kilogram is (Aa)−1.
Note that a = 1000/NA.

The specific heat capacity, in J kg−1K−1, is then cp ≈ 3
2k/Aa. Using

k = 1.38 × 10−23 J/K, we get cp ≈ 12500/A J kg−1K−1. Picking a rela-
tively light substance with A = 20, we get a specific heat capacity around
600 J kg−1K−1—which is in the correct range for most substances.

As for the hint on other ways to assess k, you can use the fact that kT ≈
1
40 eV at room temperature. You could back it out of the ideal gas law:
PV = NkT , making use of STP conditions and the fact that one mole
occupies 22.4 � in these conditions. You could make use of the fact that the
sound speed in air must be close to

�
kT/m. Lots of other ways as well.


