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#1 : UNDERGRADUATE MECHANICS
PROBLEM: A board of length L and mass M can slide frictionlessly along a

horizontal surface. A small block of mass m initially rests on the board at

its right end, as shown in the figure. The coe±cient of friction between the

block and the board is µ. Starting from rest, the board is set in motion to

the right with initial speed v0. What is the smallest value of v0 such that

the block ends up sliding oÆ the left end of the board? Assume the small

block is su±ciently narrow relative to L that its width can be neglected.

SOLUTION: The initial speed of the block is v = 0 and the initial speed of the

board is V = v0. The total momentum of the system is conserved, because

the surface is frictionless. Thus, the total momentum is P = MV + mv =

Mv0 at all times. Now while the total momentum P is conserved, the total

energy E is not, due to the friction between the board and the block. The

kinetic energy of the system is given by E =

1
2MV 2

+

1
2mv2

and must be

equal to E0 ° W , where E0 =

1
2Mv2

0 is the initial kinetic energy of the

system and W = µmgd is the work done against friction for the block to

slide a distance d to the left relative to the board. The minimum value of

v0 must occur when V = v and d = L. Thus, we have two equations in the

two unknowns (v0, v):

(M + m)v = Mv0

1
2(M + m)v2

=

1
2Mv2

0 ° µmgL .

The solution is

v0 =

r
2µgL

≥
1 +

m

M

¥
.
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#2 : UNDERGRADUATE MECHANICS
PROBLEM: Two blocks of masses m1 and m2 and three springs with spring

constants k1, k2, and k12 are arranged as shown in the figure. All motion is

purely horizontal.

(a) Choose as generalized coordinates the displacement of each block from

its equilibrium position, and write the Lagrangian.

(b) Find the T and V matrices.

(c) Suppose

m1 = 2m , m2 = m , k1 = 4k , k12 = k , k2 = 2k ,

Find the frequencies of small oscillations.

(d) Find the normal modes of oscillation. You do not need to normalize

them.

SOLUTION:
(a) The Lagrangian is

L =

1
2m1 ẋ

2
1 +

1
2m2 ẋ

2
2 ° 1

2k1 x

2
1 ° 1

2k12 (x2 ° x1)
2 ° 1

2k2 x

2
2

(b) The T and V matrices are

Tij =

@

2
T

@ẋi @ẋj
=

µ
m1 0

0 m2

∂
, Vij =

@

2
U

@xi @xj
=

µ
k1 + k12 °k12

°k12 k12 + k2

∂

(c) We have m1 = 2m, m2 = m, k1 = 4k, k12 = k, and k2 = 2k. Let us

write !

2 ¥ ∏!

2
0, where !0 ¥

p
k/m. Then

!

2
T°V = k

µ
2∏° 5 1

1 ∏° 3

∂
.
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The determinant is

det (!

2
T°V) = (2∏

2 ° 11∏ + 14) k

2

= (2∏° 7) (∏° 2) k

2
.

There are two roots: ∏° = 2 and ∏+ =

7
2 , corresponding to the eigenfre-

quencies

!° =

r
2k

m

, !+ =

r
7k

2m

(d) The normal modes are determined from (!

2
aT ° V)

~

√

(a)
= 0. Plugging

in ∏ = 2 we have for the normal mode

~

√

(°)

µ
°1 1

1 °1

∂µ
√

(°)

1

√

(°)

2

∂
= 0 ) ~

√

(°)
= C°

µ
1

1

∂

Plugging in ∏ =

7
2 we have for the normal mode

~

√

(+)

µ
2 1

1

1
2

∂µ
√

(+)

1

√

(+)

2

∂
= 0 ) ~

√

(+)
= C+

µ
1

°2

∂

The standard normalization √

(a)
i Tij √

(b)
j = ±ab gives

C° =

1p
3m

, C+ =

1p
6m

.
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#3 : UNDERGRADUATE E & M
PROBLEM: A homogeneous magnetic field B is perpendicular to a track of

width l, which is inclined at an angle ↵ to the horizontal. A frictionless

conducting rod of mass m can move along the two rails of the track as

shown in the figure. The resistance of the rod and the rails is negligible.

The rod is released from rest. The circuit formed by the rod and the rails is

closed by a coil of inductance L. Find the position of the rod as a function

of time.

SOLUTION:
The rods’ equation of motion is

ma = mg sin ↵�BlI, (1)

where a is acceleration of the rod and I is the current through the rod. The

induced voltage in the rod V = Blv, where v is velocity of the rod. The

relationship between the induced voltage and the current is

L

dI

dt

= Blv = Bl

dx

dt

. (2)

Since I = 0 and x = 0 at the start of the motion, the above formula gives

LI = Blx. Substituting the current I = Blx/L into the equation of motion

gives

ma = mg sin ↵� B

2
l

2

L

x. (3)

This equation is similar to the equation of motion for a body on a spring.

The rod makes harmonic oscillations about the equilibrium position

x0 =

mgL sin ↵

B

2
L

2 . (4)
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The amplitude of the oscillations is A = x0 and the frequency of the oscil-

lations is !

2
=

B

2
l

2

mL

. The position of the rod as a function of time

x(t) = A(1� cos !t) =

mgL sin ↵

B

2
L

2 (1� cos

Blp
mL

t). (5)
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#4 : UNDERGRADUATE E & M
PROBLEM:
Most planets in our solar system have a magnetic field that extends well
beyond their atmosphere and contains trapped charged particles. Consider
a small volume where the field B can be considered uniform.
(a) Give an equation for the force F experienced by a particle of charge q
moving with velocity v ⌧ c in the field B. What is the direction of the
force?
(b) The particle in (a) will move in a circle of radius r. Given an expression
for r for a particle of mass m.
(c) Give an equation for the frequency ⌫ = v/(2⇡r) of the rotation. What
name do we give this frequency?
(d) Discuss how we could detect keV electrons trapped in a 1 Gauss plane-
tary field.

SOLUTION:
(a) The charged particles experiences the Lorentz force

F = qv ⇥B (1)

that is perpendicular to both v and B.
(b) We equate the centripetal magnetic Lorentz force and the centrifugal
force mv2/r giving r = mv/(qB).
(c) The cyclotron frequency is

⌫ =
qB

2⇡m
. (2)

(d) The electrons will emit long wavelength radio waves at the cyclotron
frequency of 2.8 MHz, where we use q = 1.6⇥10�19C and me = 9.11⇥10�28g.
This radiation can be intense. It was first detected from Jupiter (B=4 G)
in 1955.

The cyclotron radiation is polarized. Viewed form the pole of the motion
of the electron this radiation will be circularly polarized, and viewed from
the plane of the circular motion it is linearly polarized. From other directions
it is elliptically polarized.

This radiation can only escape the region of origin if the cyclotron fre-
quency exceeds the electron plasma frequency.

We can also detect these electrons if they interact with species in the
outer atmosphere to produce auroral emissions over a broad range of wave-
lengths from X-rays to infrared, and especially UV.
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#5 : UNDERGRADUATE STAT MECH
PROBLEM:
The heat capacities for gases defined at fixed pressure and fixed volume are

denoted as CP and CV , respectively.

1) Can you explain which one should be larger for ideal gases without

calculation?

2) Prove that

CP ° CV = T

µ
@P

@T

∂

V

µ
@V

@T

∂

P

(1)

3) For ideal gases, what is the value of CP ° CV ? Express the result in

terms of the number of gas molecules N and the Boltzmann constant kB.

4) Define the constant ∞ = CP /CV . Prove that PV ∞
is a constant for

the adiabatic process.

SOLUTION:
1) Cp is larger than Cv. With increasing temperature from T to T + ±T ,

during the iso-pressure process, the volume of the gas expands, and thus

the gas does work, while for the iso-thermal process, the work is zero. For

ideal gases, the internal energy only depends on temperature, and thus the

change of internal energies are the same for both processes. According to

¢Q = ¢W + ¢U , ¢Q/¢T is larger in the iso-pressure process, i.e., Cp is

larger.

2)

CP = T

µ
@S

@T

∂

p

, CV = T

µ
@S

@T

∂

V

(2)

From the relation S(T, P ) = S(T, V (T, P )), we have

µ
@S

@T

∂

P

=

µ
@S

@T

∂

V

+

µ
@S

@V

∂

T

µ
@V

@T

∂

P

. (3)

From dF = °SdT ° PdV , we get the Maxwell relation

(

@S

@V
)T = (

@P

@T
)V , (4)

thus CP ° CV = T
°

@P
@T

¢
V

°
@V
@T

¢
P
.

3) For the idea gas PV = NkBT ,

µ
@P

@T

∂

V

=

NkB

V
(5)

µ
@V

@T

∂

P

=

NkB

P
, (6)
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and thus Cp ° Cv = T (NkB)

2/(PV ) = NkB.

4) During the adiabatic process

dS = (CvdT + PdV )/T = 0, PdV + V dP = NkBdT, (7)

thus °PdV = CvdT and °PdV + NkBdT = CpdT = ∞CvdT = °∞PdV .

We have

V dP + ∞PdV = 0 (8)

°dP

P
= ∞

dV

V
, (9)

and thus PV ∞
is a constant.
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#6 : UNDERGRADUATE STAT MECH
PROBLEM:

A zipper has N°1 links. Each link is either open with energy " or closed

with energy 0. We require, however, that the zipper can only open from the

left end, and that link ` can only unzip if all links to the left (1, 2, , ` ° 1)

are already open. Each open link has G degenerate states available to it (it

can flop around).

1. Compute the partition function of the zipper at temperature T .

Notational request from the grader: please use the name x ¥ Ge

°"/kBT

.

2. Find the average number of open links at low temperature, i.e., in the

limit "¿ k

B

T .

3. Find the average number of open links at high temperature, i.e., in

the limit k

B

T ¿ ".

[Note: You can do this part of the problem independently of part 1.]

4. Is there a special temperature at which something interesting happens

at large N? What happens there?

[Cultural remark: this is a very simplified model of the unwinding of

two-stranded DNA molecules – see C. Kittel, Amer. J. Physics, 37 917

(1969).]

SOLUTION:

1. The state of the system is completely specified by the number of open

links n, which can go from n = 0, 1, 2, ...N ° 1. The partition function

can be summed to give

Z =

N°1X

n=0

G

n

e

°n"/kBT

=

N°1X

n=0

x

n

=

1° x

N

1° x
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where x ¥ Ge

°Ø"

.

2. At any temperature,

hni = x@

x

lnZ = ° Nx

N

1° x

N

+

x

1° x

.

k

B

T ø ≤ =) xø 1.

In this limit, we can Taylor expand in the Boltzmann factor x. The

leading term is linear in x, and comes from one open link.

hni kBT¿≤º x + O(x

2
)

3. At high temperature, every configuration is equally probable, and x!
G. The probability of any given state is

1
Z

where Z is just the number

of states; this is still not so easy to evaluate. For general G, the answer

is

hni = x@

x

lnZ|
x=G

= ° NG

N

1°G

N

+

G

1°G

.

In the large-G limit hni simplifies to hni G!1! N ° 1.

4. The partition function has a denominator which goes to zero at x = 1,

that is when

1 = Ge

°Ø" , k

B

T =

"

lnG

.

At any finite N , the actual pole in Z is cancelled by the numerator.

As N ! 1, this is not the case and there is a real singularity – it

becomes a sharp phase transition. When N = 1, at x = 1 we reach
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the radius of convergence about x = 0 of the partition sum. Physically:

above this temperature, the entropy of the open bonds wins out over

the energetic cost of opening them, and there is a transition between a

mostly-zippered state and a mostly-unzippered state. This is strikingly

visible in the plot of the fraction of open links

hni
N

above.
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#7 : UNDERGRADUATE QUANTUM
PROBLEM:

A one-dimensional particle of mass m and energy E is incident on the �-

function potential V (x) = V0�(x).

1. Find the reflection and transmission coe�cients.

2. Find the phase shift � of the transmitted wave, and the di↵erence

�(E !1)� �(E ! 0).

3. The scattering amplitudes have a pole at a complex value of momentum

~k. Find the location k0 of the pole. What is the physical interpretation

of this pole?

SOLUTION:

1.

E =

~2
k

2

2m

(1)

The wavefunctions are

 

<

= e

ikx

+ Re

�ikx

 

>

= Te

ikx

(2)

 continuous gives

1 + R = T (3)

and

 

0
>

(0)�  0
<

(0) =

2mV0

~2
 (0) (4)

gives

ikT � ik(1�R) =

2mV0

~2
(1 + R) (5)

so that

R = � c

c� 2ik

T = � 2ik

c� 2ik

c =

2mV0

~2
(6)
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2.

T = |T | ei�

tan � = � c

2k

(7)

As E !1, k !1 and

�(E !1) = 0. (8)

As E ! 0, k ! 0 and

�(E ! 0) = �⇡
2

(9)

so

�(E !1)� �(E ! 0) =

⇡

2

(10)

3. The pole is at

k0 = �i

c

2

(11)

The pole corresponds to a bound state with energy

E = � ~2

2m

c

2

4

= �mV

2
0

2~2
(12)

which is present when c < 0, i.e. V0 < 0.
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#8 : UNDERGRADUATE QUANTUM
PROBLEM: Consider an electron constrained to move in the xy plane under
the influence of a uniform magnetic field of magnitude B oriented in the +ẑ

direction. The Hamiltonian for this electron is

H =
1

2m

✓⇣
p

x

� e

c

A

x

⌘2
+
⇣
p

y

� e

c

A

y

⌘2
◆

where m and e are the mass and charge of the electron, and c is the speed
of light.

(a) Find a suitable expression for ~

A so that p
x

is a constant of motion
for the above Hamiltonian.

(b) With this choice for ~

A, show that the eigenfunctions of H can be
written in the form

 (x, y) = e

i
~ p

x

x�(y)

where �(y) satisfies the Schrödinger equation for a one-dimensional har-
monic oscillator whose equilibrium position is y = y0. Find the e↵ective
spring constant k for this oscillator and the shift of the origin y0 in terms of
p

x

, B,m, e, c.
(c) Find the energy eigenvalues for this system, and indicate degenera-

cies.
(d) For the remainder of the problem, suppose we further restrict the

particles to live in a square of side length L. Suppose we demand periodic
boundary conditions. What are the possible values of p

x

?

SOLUTION:
(a) We can choose a gauge for ~A with ~r⇥ ~

A = Bẑ, uniform, so that x does
not appear:

A

x

= �By, A

y

= 0.

(b) The Schrödinger equation is

H (x, y) = E (x, y) (1)

and with the choice of gauge from part (a) we have

H =
1

2m

✓⇣
p

x

+
e

c

By
⌘2

+ p2
y

◆
.

Plugging in the given ansatz turns p
x

into a number, and (1) becomes:

1
2m

✓⇣
p

x

+
e

c

By

⌘2
+ p2

y

◆
e

i
~ p

x

x�(y) = Ee

i
~ p

x

x�(y)
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or  
p2

y

2m

+
1

2m

⇣
p

x

+
e

c

By

⌘2
!
�(y) = E�(y)

or  
p2

y

2m

+
1

2m

✓
eB

c

◆2 ⇣
y +

c

eB

p

x

⌘2
!
�(y) = E�(y)

which is the Schrödinger equation for a simple harmonic oscillator (SHO)
 

p2
y

2m

+
k

2
(y � y0)2

!
�(y) = E�(y)

with k = m

�
eB

mc

�2 and y0 = � cp

x

eB

.
(c) The energy spectrum of the SHO is

E

n

= ~!
�
n + 1

2

�

where

! =
r

k

m

=
eB

mc

= !

c

,

the cyclotron frequency. Notice that p

x

drops out of the expression for the
energy and so there is a big degeneracy, approximately linear in the system
size.

(d) Using the boundary condition that the wavefunction should be the
same at the end points ( (x = L) =  (x = 0)), we have

p

x

=
2⇡`
L

, ` 2 Z .
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#9 : UNDERGRADUATE GENERAL/MATH
PROBLEM:

Imagine a long cylindrical tube of radius R at temperature Twall. Fluid flows

through the tube at velocity v. The temperature of the fluid when it enters

the tube is Tfluid. What is the length L that the fluid must travel in the

tube so that its temperature reaches Twall?

1. Write down the equation you would use to solve the problem, and the

boundary conditions.

2. Write down a back-of-the-envelope estimate of L using dimensional

analysis. Find L for water if R = 0.5mm, v = 1 mm/s, D, the thermal

diÆusivity is 0.15mm

2/s, Tfluid = 21

±
C, and Twall = 37

±
C.

SOLUTION:
Basically, all these problems work by dimensional analysis.

(1)

@T

@t

= D @

2
T

@x

2 (1)

(2) From (1), the diÆusion coe±cient has units [length]

2
/[time]. If the fluid

were stationary, it would take a time ª R2/D to warm up.

Now, it’s moving at velocity v, so the length you have to travel would

be v §R2/D. For the given parameters, the characteristic travel distance for

thermal equilibration would be order of 1 mm. Since these are estimates for

factors of e, it would be safer to multiply by 10, so the safe estimate would

be about 10 mm.
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#10 : GENERAL/MATH

PROBLEM:

(a) Recall that �(n) ⌘
R1
0 e

�t

t

n

dt

t

⌘ (n� 1)!. Verify the second equality in

I ⌘
Z 1

�1
e

�x

2
dx = �(1/2).

(b) Explicitly evaluate the Gaussian integral I above. Hint: consider I2.

(c) The volume element in D-dimensional polar coordinates is dV = r

D�1
drd⌦

D�1,
where d⌦

D�1 is an angle element. A sphere S

D�1 of radius r in D di-
mensions, given by x

2
1 + . . . x

2
D

= r

2, has surface area ⌦
D�1r

D�1, where
⌦

D�1 =
R

d⌦
D�1 is the total solid angle, e.g. ⌦1 = 2⇡ for a circle in D = 2

and ⌦2 = 4⇡ for a sphere in D = 3. Evaluate ⌦
D�1, for general D, in terms

of the Gamma function. Hint: consider ID.

SOLUTION:

(a) Substitute t = x

2, so dt = 2xdx and �(1/2) = 2
R1
0 e

�x

2
dx =

R1
�1 e

�x

2
dx.

(b) Using the hint, going to polar coordinates, and substituting t = r

2,

I

2 =
Z Z

dxdye

�(x2+y

2) =
Z Z

rdrd✓e

�r

2
= ⇡

Z 1

0
dte

�t = ⇡,

so I = �(1/2) =
p

⇡.

(c) Follow the suggestion in the question and go to D-dimensional polar
coordinates, with r

2 = x

2
1 + . . . x

2
D

ID = ⇡

D/2 =
Z

. . .

Z
dx1 . . . dx

D

e

�(x2
1+...x

2
D) =

Z
r

D�1
dr

Z
d⌦

D�1e
�r

2
=

= ⌦
D�1

Z 1

0
e

�r

2
r

D

dr

r

= ⌦
D�1

Z 1

0
e

�t

t

D/2 dt

2t

⌘ 1
2⌦

D�1�(D/2),

so ⌦
D�1 = 2⇡

D/2
/�(D/2).
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#11 : GRADUATE MECHANICS
PROBLEM: A yo-yo of mass M is composed of 2 large disks of radius R and

thickness t separated by a distance t with a shaft of radius r. Assume a

uniform density throughout. Find the tension in the massless string as the

yo-yo descends under the influence of gravity.

SOLUTION:
Let the density of the yo-yo be ⇢, then its moment of inertia and mass are

respectively

I = 2⇥ 1
2⇡t⇢R

4
+

1
2⇡t⇢r

4
, (1)

M = 2⇥ ⇡t⇢R

2
+ ⇡t⇢r

2
, (2)

whence

I =

1
2M

⇣
2R4+r4

2R2+r2

⌘
. (3)

The equations of motion of the yo-yo are

Mẍ = Mg � T, (4)

I

¨

✓ = Tr, (5)

where T is the tension in the string. We also have the constraint ẍ = r

¨

✓.

From the above we obtain

T =

IMg
I+Mr2 =

(2R4+r4)Mg
2R4+4R2r2+3r4 . (6)
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#12 : GRADUATE MECHANICS
PROBLEM: A particle under the action of gravity slides on the inside of a
smooth paraboloid of revolution whose axis is vertical. Using the distance
from the axis, r, and the azimuthal angle � as generalized coordinates, find

(a) The Lagrangian of the system.

(b) The generalized momenta and the corresponding Hamiltonian.

(c) The equation of motion for the coordinate r as a function of time.

(d) If d�
dt = 0, show that the particle can execute small oscillations about

the lowest point of the paraboloid, and find the frequency of these
oscillations.

SOLUTION: Suppose the paraboloid of revolution is generated by a parabola
which in cylindrical coordinates (r, �, z) is represented by

z = Ar2, (1)

where A is a positive constant.
(a) The Lagrangian of the system is

L = T � V = 1
2m(ṙ2 + r2�̇2 + ż2)�mgz (2)

= 1
2m(1 + 4A2r2)ṙ2 + 1

2mr2�̇2 �Amgr2. (3)

(b) The generalized momenta are

pr = @L
@ṙ = m(1 + 4A2r2)ṙ, (4)

p� = @L
@�̇

= mr2�̇, (5)

and the Hamiltonian is

H = prṙ + p��̇� L (6)

= 1
2m(1 + 4A2r2)ṙ2 + 1

2mr2�̇2 + Amgr2 (7)

= p2
r

2m(1+4A2r2) +
p2

�

2mr2 + Amgr2. (8)

(c) Lagrange’s equations

d
dt

⇣
@L
@q̇i

⌘
� @L

@qi
= 0 (9)
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give

m(1 + 4A2r2)r̈ + 4mA2rṙ2 �mr�̇2 + 2Amgr = 0, (10)

mr2�̇ = constant. (11)

Letting the constant be mh and eliminating �̇ from Eq. 10, we obtain the
equation for r:

(1 + 4A2r2)r3r̈ + 4A2r4ṙ2 + 2Agr4 = h2. (12)

(d) If �̇ = 0, Eq. 10 becomes

(1 + 4A2r2)r̈ + 4A2rṙ2 + 2Agr = 0. (13)

The lowest point of the paraboloid is given by r = 0. For small oscillations
in its vicinity, r, ṙ, r̈ are small quantities. Then to first approximation Eq.
13 becomes

r̈ + 2Agr = 0. (14)

Since the coe�cient of r is positive, the particle executes simple harmonic
motion about r = 0 with angular frequency

! =
p

2Ag. (15)
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#13 :GRADUATE ELECTRODYNAMICS

PROBLEM: A long, straight cylindrical wire, of radius a carries a uniformly

distributed current I. It emits an electron from r = a, with initial, rela-

tivistic velocity v0 parallel to its axis. Find the maximum distance r
max

from the axis of the wire which the electrons can reach, treating everything

relativistically.

SOLUTION: Find

~B =

b¡2I/rc and then

~A = °bz(2I/c) ln(r/a), so the elec-

trons have

L = °mc2
p

1° v2/c2
+ (2I|e|/c2

)v
z

ln(r/a).

The energy and p
z

are conserved:

p
z

=

@L

@v
z

= ∞mv
z

+ (2I|e|/c2
) ln(r/a) = ∞0mv0.

H = ∞mc2
= ∞0mc2

with ∞ = 1/
p

1° v2/c2
and ∞0 ¥ 1/

p
1° v2

0/c2
. So ∞ = ∞0 and r

max

is

where ṙ = 0, which means that v
z

= °v0 (half-period of cyclotron rotation),

which gives

r
max

= a exp(∞0mv0c
2/I|e|).
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#14 :GRADUATE ELECTRODYNAMICS

PROBLEM: Consider a hollow spherical shell of radius a and surface charge
density �.

(a) Derive the magnetic field, ~

B both inside and outside the shell, if it is
spinning at frequency ! around an axis through its center. One way to solve
this is to write ~

B = �r�

mag

, note that �

mag

solves Laplace’s equation, and
that the rotational symmetry is broken only by the vector ~!, so only the
` = 1 harmonic contributes. If you solve the question this way, be sure to
note and use all the matching conditions above and below r = a.

(b) How much work is required to get the shell spinning at frequency !,
starting from the shell at rest? Show that your answer fits with assigning
an additional moment of inertia associated with electrodynamics, I

total

=
I

mech

+ I

E&M

, with I

mech

the usual moment of inertia of a hollow sphere.
Don’t bother to work out I

mech

, it’s 2mr

2
/3 and not relevant for computing

the quantity of interest, I

E&M

.

SOLUTION:

(a) Following the hints in the question, we have

�

out

mag

= C cos ✓/r

2
, �

in

mag

= �Dr cos ✓ = �Dz.

Gauss’ law implies that ~

Bbr must be continuous at the surface, and the
curl ~

B Maxwell equation implies that br ⇥ ( ~

B

out

� ~

B

in

) = 4⇡

~

K/c, with
~

K = �~v = �~! ⇥ abr. It follows that ~

B

out is that of a magnetic dipole, and
~

B

in is a constant:

~

B

in

=
2~m

a

3
,

~

B

out

=
3(br · ~m)br � ~m

r

3
,

with ~m = 4⇡

3
~!�a

4

c

.

(b) The work required is the additional energy associated with the magnetic
field of the spinning sphere,

W

E&M

= �U

field

=
Z

d

3
x

~

B

2
/8⇡

Plugging in the above ~

B and doing the volume integral gives

W

E&M

=
1
2
a

�3
~m

2 = 1
2(4⇡/3)2~!2

�

2
a

5
/c

2 ⌘ 1
2I

E&M

~!

2
,
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with
I

E&M

= (4⇡/3)2�2
a

5
/c

2
.

(Easy to check that the units are correct.)
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#15 : GRADUATE STATISTICAL MECHANICS
PROBLEM: The energy flux emitted from the surface of a perfect blackbody

is JE = æT 4
, where æ = 5.67£ 10

°8
W/m

2
K

4
is Stefan’s constant and T is

the temperature.

(a) Find a corresponding expression for the entropy flux, JS .

(b) Idealizing the earth as a perfect blackbody, the average absorbed solar

energy flux is ©E = 342W/m

2
. Derive an expression for the entropy

flux of the radiation emitted by the earth, and provide an estimate of

its value in MKS units.

(c) Derive an expression for the ratio of the entropy flux of radiated ter-

restrial photons to the entropy flux of solar photons incident on the

earth? Express your answer in terms of the surface temperatures of

the earth and the sun.

SOLUTION:

(a) The energy flux is

JE =

cE

4ºV

º/2Z

0

dµ sin µ cos µ

2ºZ

0

d¡ =

cE

4V
,
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where E is the total energy. Mutatis mutandis, we have that JS =

cS/4V . We relate E and S using thermodynamics: dE = T dS°p dV .

From JE = æT 4
we then have

JS =

4
3æT 3 .

(b) The total terrestrial entropy flux is

©S =

4©E

3Te
º 4 · 342W/m

2

3 · 278K

= 1.64W/m

2
K ,

where we have approximated the mean surface temperature of the

earth as Te º 278K, which is what one finds assuming the earth is

a perfect blackbody. (The actual mean surface temperature is about

287K.)

(c) First, recall the argument for the steady state temperature of the earth.

The energy of the absorbed solar radiation is (æT 4
Ø)(4ºR2

Ø)(ºR2
e/4ºa2

e),

which is obtained by multiplying the total energy output of the sun

by the ratio of the earth’s cross section ºR2
e to the area of a sphere

whose radius is ae = 1 AU. Setting this to the energy output of the

earth, (æT 4
e )(4ºR2

e) yields the expression Te = TØ
p

RØ/2ae. When

comparing the entropy flux of the solar radiation to that emitted by

the earth, we use the same expressions, except we replace T 4
by

4
3T 3

throughout. Therefore the ratio of entropy fluxes is

¥ =

T 3
e

T 3
Ø(R2

Ø/4a2
e)

=

TØ
Te
º 21 ,

taking TØ º 5780K.
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#16 : GRADUATE STATISTICAL MECHANICS
PROBLEM: The Landau expansion of the free energy density of a particular

system is given by

f(T,m) = (T ° T0)m2 ° T0 m3
+ T0 m4 ,

where m is the order parameter and T0 is some temperature scale, and where

we have set kB ¥ 1.

(a) Find the critical temperature Tc. Is the transition first or second order?

(b) Sketch the equilibrium magnetization m(T ).

(c) Find m(T°
c ), i.e. the value of m just below the critical temperature.

SOLUTION:

Figure 1: Sketch for part (b).

(a) The free energy is of the general form f(m) =

1
2am2 ° 1

3ym3
+

1
4bm4

,

with T dependence implicit in the coe±cients:

a = 2(T ° T0) , y = 3T0 , b = 4T0 .

Setting f 0
(m) = 0 we have (a ° ym + bm2

)m = 0, yielding three

solutions, one of which lies at m = 0. The other two solutions are

roots of the quadratic factor:

m± =

y

2b
±

r≥ y

2b

¥2
° a

b
.
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These solutions are both real and positive if a < y2/4b. Since the

free energy increases without bound for m ! ±1, we must have

that m° is a local maximum and m+ a minimum. To see if it is the

global minimum, we must compare f(m+) with f(0). To do this, set

f(m) = f(0), which yields 2a ° 4
3ym + bm2

= 0, and subtract from

the equation a° ym + bm2
= 0 to find m = 3a/y. This is the value of

m for which the two minima are degenerate. Equating this with the

expression for m+, we obtain a = 2y2/9b, which is our equation for

Tc. Solving this equation for T , we obtain Tc =

5
4 T0.

(b) A sketch is provided above. Note that m(T ) drops discontinuously to

zero at the transition.

(c) Evaluating m = 3a/y at T = Tc, we have m(T°c ) =

1
2 .
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#17 : GRADUATE QUANTUM
PROBLEM:

1. An electron gun produces electrons randomly polarized with spins up

or down along one of the three possible radomly selected orthogonal

axes 1, 2, 3 (i.e. x, y, z), with probabilities pi," and pi,#, i = 1, 2, 3. To

simplify the final results, it is better to rewrite these in terms of di and

�i defined by

pi," =

1

2

di +

1

2

�i pi,# =

1

2

di �
1

2

�i i = 1, 2, 3 (1)

Probabilites must be non-negative, so di � 0 and |�i|  di.

(a) Write down the resultant electron spin density matrix ⇢ in the

basis |"i, |#i with respect to the z axis.

(b) Any 2⇥ 2 matrix ⇢ can be written as

⇢ = a1 + b · � (2)

in terms of the unit matrix and 3 Pauli matrices. Determine a

and b for ⇢ from part (a).

(c) A second electron gun produces electrons with spins up or down

along a single axis in the direction n̂ with probabilities (1±�)/2.

Find n̂ and � so that the electron ensemble produced by the

second gun is the same as that produced by the first gun.

SOLUTION:

(a) The density matrix is

p1,"
1

2

✓
1 1

1 1

◆
+ p1,#

1

2

✓
1 �1

�1 1

◆
+ p2,"

1

2

✓
1 �i

i 1

◆
+ p2,#

1

2

✓
1 i

�i 1

◆

+ p3,"

✓
1 0

0 0

◆
+ p3,#

✓
0 0

0 1

◆

=

1

2

✓
(d1 + d2 + d3) + �3 �1 � i�2

�1 + i�2 (d1 + d2 + d3)� �3

◆

=

1

2

✓
1 + �3 �1 � i�2

�1 + i�2 1� �3

◆
(3)
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(b) By inspection,

a =

1

2

b =

1

2

� (4)

(c) This is the same as the density matrix produced by the second

electron gun if n̂ is parallel to �, and D = |�|.
A simple way to see this is to a go to a rotated coordinate system

with z

0
axis along �.
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#18 : GRADUATE QUANTUM
PROBLEM: The Hamiltonian for a quantum mechanical rigid body is

H = 1
2

✓
L2

1

I1
+

L2
2

I2
+

L2
3

I3

◆
, (1)

where I1, I2, I3 are the principal moments of inertia, and (L1,L2,L3) ⌘
(L

x

,L
y

,L
z

) are the angular momentum operators, satisfying the commuta-
tion relations

[L
i

,L
j

] = i~✏
ijk

L
k

. (2)

You may assume the angular momentum takes on only integer values. Hamil-
tonians of the form (1) describe the rotational spectrum of molecules.

(a) (Very easy) First, consider the case I1 = I2 = I3 = I (a spherical
top, such as methane). Write down a formula for the energy levels in terms
of an appropriate quantum number.

(b) (Easy) Next, consider the case I1 = I2 = I? 6= I3 (a symmet-
ric top, such as ammonia). Show that L3 is a constant of motion. Write
down another constant of motion which commutes with L3, and express the
Hamiltonian as a function of the two constants of motion. Then write down
a formula for the energy levels as a function of the two good quantum num-
bers. Indicate the allowed ranges of these quantum numbers. Also indicate
any degeneracies.

(c) (A little harder) Now consider the case of a slightly asymmetric top,
i.e. one for which

I1 = I? � ✏, I2 = I? + ✏ (3)

where ✏ is small. What are the good quantum numbers in this case? Find
the shifts in the energy levels relative to those of the symmetric top, to first
order in the small quantity ✏. List the energy shifts for all values of the two
quantum numbers in part (b).
Hints: (1) Express the perturbing Hamiltonian H�Hsymmetric in terms of
raising and lowering operators. (2) A useful formula:

L+|`, mi = ~
p

(`�m)(` + m� 1)|`, m + 1i . (4)

(3) You will need to use degenerate perturbation theory.

SOLUTION:
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(a) For the spherical case,

H =
1
2I

�
L2

1 + L2
2 + L2

3

�
=

~L2

2I
(5)

and so

E
`

=
~2`(` + 1)

2I
. (6)

(b) For the symmetric top,

H =
1
2

✓
L2

1 + L2
2

I?
+

L2
3

I3

◆
=

1
2

 
~L2 � L2

3

I?
+

L2
3

I3

!
. (7)

Since [L3, ~L2] = 0, both L3 and ~L2 are constants of the motion ([L3,H] =
0 = [~L2,H]). For a given `, the eigenvalues of L3 take values m = �`,�` +
1, ...0, ...`� 1, `, and the energies are:

E
`,m

=
~2

2

✓
`(` + 1)�m2

I?
+

m2

I3

◆
,

` = 0, 1, ...1
m = �`, ...0, ...`

.

(c) The perturbing Hamiltonian is

�H ⌘ H�Hsymmetric = 1
2

✓
1

I? � ✏
L2

1 +
1

I? + ✏
L2

2 �
1
I?

�
L2

1 + L2
2

�◆
. (8)

Using 1
I?⌥✏

= 1
I?

± ✏

I

2
?

+ ..., we have

�H =
✏

2I2
?

�
L2

1 � L2
2

�
. (9)

Now let’s write this in terms of raising and lowering operators:

L± ⌘ L1 ± iL2,L1 = 1
2(L+ + L�),L2 =

1
2i

(L+ � L�)

which satisfy (according to (2))

[L3,L±] = ±L±, [L+,L�] = 2L3.

In terms of these,
�H =

✏

4I2
?

�
L2

+ + L2
�
�

. (10)

This operator changes m by ±2 (i.e. |�m| = 2 ). This means that its first
order correction to the energies is zero for any state that isn’t degenerate
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with some other state related to it by |�m| = 2. The only degeneracy in the
spectrum comes from E

`,m

= E
`,�m

. So the condition for nonzero energy
shift is only met by m = ±1 states (and any `). So:

�E
`,m

= 0, m 6= ±1.

For m = ±1, we have to use degenerate perturbation theory, that is, we have
to diagonalize the matrix obtained by acting with �H in the degenerate
subspace. For each `, this matrix h is 2 ⇥ 2, indexed by m = ±1, and its
nonzero matrix elements are:

✏

4I2
?
h`, 1|(L2

+ + L2
�)|`,�1i =

✏

4I2
?
h`,�1|(L2

+ + L2
�)|`,+1i ⌘ �.

So within the subspace, the matrix to diagonalize is

h =
✓

0 �
� 0

◆

whose eigenvalues are ±�. Using (4),

L2
+|`,�1i = ~2`(` + 1)|`,+1i,

and � = ✏~2

4I

2
?

`(` + 1).
The energy shifts are therefore

�E
`,m

= ± ✏~2

4I

2
?

`(` + 1), for m = ±1
�E

`,m

= 0 else. (11)
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#19 : GRADUATE GENERAL/MATH

PROBLEM:

Solve the Laplace equation r2
f = 0 for function f(r, ✓) inside a unit circle

that obeys the boundary conditions

f(1, ✓) = 1 , �⇡

2

< ✓ <

⇡

2

,

= 0 , otherwise,

where 0  r  1 and �⇡ < ✓  ⇡ are the polar coordinates. Assume that f

is nonsingular and can be sought in the form of Fourier series

f(r, ✓) =

1X

m=�1
cmr

|m|
e

im✓
.

Reduce these series to geometric ones and sum them analytically.

SOLUTION:

We will first consider a more general Dirichlet boundary conditions f(1, ✓

0
) =

g(✓

0
) and then treat the specific case. Inverting the Fourier series, we find

cm =

⇡Z

�⇡

d✓

0

2⇡

g(✓

0
)e

�im✓0
.

Substituting this expression into the direct series and interchanging the order

of summation and integration, we get

f(r, ✓) = c0 +

⇡Z

�⇡

d✓

0

2⇡

g(✓

0
)

1X

m=1

[z

m
⇣

m
+ (z

⇤
⇣

⇤
)

m
] ,

where we introduced notations z = re

i✓
and ⇣ = e

i✓0
. We see that the result

is the sum of two geometric series. For real g(✓

0
), they are complex conjugate

of each other. After some algebraic manipulations, we arrive at

f(r, ✓) = �c0 +

1

⇡

Im

I
d⇣

⇣ � z

g(⇣) ,
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where the integration path is the unit circle in the complex plane. For our

particular g(⇣) we obtain

f(z) = �1

2

+

1

⇡

Im ln

✓
z � i

z + i

◆
.

The logarithmic term is assumed to have the branch cut along the arc on

which g(⇣) is nonzero. If desired, this expression can be further reduced to

a combination of arctan-functions.

For illustration, consider the diameter that runs along the x-axis, in which

case we get z = x and

f(x, y = 0) =

1

2

+

2

⇡

arctanx .
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#20 : GRADUATE MATH/OTHER

PROBLEM:

The following problem is motivated by modeling the solar heating of rotating

asteroids in space. The surface of a black body is subject to a uniform in

space, periodic in time, radiative energy flux E = E0 + �E cos !t. The body

has thermal conductivity { and specific heat C. Treat the black body as

the (infinite region) z < 0, whose surface is the xy plane.

a) Write down the heat di↵usion equation and the boundary conditions

appropriate for this system.

b) Consider the case of a constant energy flux, �E = 0, and find the surface

temperature as a function of E0.

c) Assuming �E is a small parameter, use the perturbation theory to find

�T = �T (E0, !), the amplitude of oscillations in the surface temperature.

Compute only the term that is of the first order in �E. Give a physical

interpretation of the obtained !-dependence.

SOLUTION:

a) Let z be the coordinate normal to the surface and increasing in the

outward direction. Let z = 0 be the surface plane. The temperature obeys

the di↵usion equation

C@tT = {@

2
zT .

The boundary condition at z = 0 is governed by the energy balance:

{@zT + �T

4
��
z=0

= E(t) ,

where � is the Stefan-Boltzmann constant.

b) For �E = 0 (time-independent radiation), the solution is T (z, t) = T0 =

const, where

T0 = (E0/�)

1/4
.

c) For a finite small �E, we seek the solution in the form

T (z, t) = T0 + Re �Te

kz�i!t
.
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The thermal di↵usion equation is satisfied if we set

k = e

�i⇡/4
p

C!/{ .

The boundary condition expanded to the first order in �T reads

({k + 4�T

3
0 )�T = �E .

Solving for �T and doing some algebraic simplifications, we obtain the final

result:

|�T | =

�����
(E0/�)

1/4
�E

4E0 + e

�i⇡/4
p

C!{

����� .

The !-dependence can be interpreted as follows. The system appears to have

a characteristic relaxation time ⌧ ⇠ (C{)/E

2
0 . When the external energy

flux variations are slow, ! ⌧ 1/⌧ , the surface temperature tracks them

adiabatically, i.e., �T can be computed from the formula for T0(E0). In the

opposite limit, ! � 1/⌧ , the temperature variations become suppressed.


