
INSTRUCTIONS
PART I : PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. (E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.
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#1: UNDERGRADUATE MECHANICS

PROBLEM:

A rigid uniform bar of mass m and length L is supported in equilibrium
in a horizontal position by two massless springs with the spring constant
k attached one at each end. The motion of the bar is constrained to the
xz plane. The bar center of gravity is constrained to move parallel to the
vertical z axis. Gravity points down along the z axis. Find the frequency
of vibration for symmetric (i.e. symmetric under exchange of the bar ends)
mode and for antisymmetric mode of the system.
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#2: UNDERGRADUATE MECHANICS

PROBLEM:

Two cylinders with equal radii R are rotating with the same angular velocity,
⌦, but in opposite directions. Take the axes of the cylinders parallel to the
by axis, both at height z = 0, and at x = ±`/2; see the figure (next page).
A board with a mass m and length L is placed on the cylinders slightly o↵-
center: let x0 be the initial x-location of its center of mass. The coe�cient of
friction between the cylinders and the board is µ. Describe mathematically
the ensuing motion of the board.
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#3: UNDERGRADUATE E&M

PROBLEM:

A long coaxial cable consists of two concentric cylindrical conductors. The
inner conductor is a solid cylinder with a radius a. The outer conductor
is a thin cylindrical shell with a radius b > a. The cable carries current
I, which flows forward along the inner conductor and backward along the
outer conductor. The current is evenly distributed over the cross-section of
the inner conductor and over the surface of the outer conductor. Find the
inductance of the cable per unit length.
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#4: UNDERGRADUATE E&M

PROBLEM:

Imagine that magnetic monopoles are found to exist. We then need to revise
Maxwell’s equations to include magnetic charges. We assume that for the
static case the magnetic version of Coulomb law is ~B = qm

r2 r̂ (Gauss unit),

or ~B = µ0
4⇡

qm
r2 r̂ (SI unit).

1) What is the Gauss’s law in the di↵erential form for magnetic monopoles in
the static case, i.e. r· ~B(~r) =? Use the ⇢m(~r) to denote the monopole density.
In following, we assume this magnetic version of Gauss law is generally valid
not just for statics.

2) Magnetic charges must be conserved. Write down the associated di↵er-
ential form of magnetic charge conservation in terms of ⇢m and ~jm, where
~jm(~r) is the monopole current density.

3) Show that only modifying the r · ~B term of the Maxwell equation would
not maintain monopole charge conservation. Find the appropriate modifi-
cation of Faraday’s law, needed to maintain monopole charge conservation.

4) Imagine an infinitely long wire carrying a steady monopole current Im
along the ẑ-direction. Find the associated electric field ~E(⇢,�, z) in cylin-
drical coordinates.



CODE NUMBER: ————– SCORE: ———— 6

#5: UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: At t = 0, an electron, with magnetic moment ~µ = �e~
2mc~�, is in the

spin state

�(t = 0) =

0

@

q
2
3 iq
1
3

1

A .

A magnetic field B is applied in the z direction. a) Find the spin state of
the particle, as a function of time. b) Find the expectation value of Sy as
a function of time. c) What is the probability, as a function of time, to
measure that the electron’s spin along the x direction is ~

2?
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#6: UNDERGRADUATE QUANTUM MECHANICS

PROBLEM:

An electron is in a three dimensional harmonic oscillator potential V (r) =
1
2m!2r2. A small electric field, of strength Ez, is applied in the z direction.
Calculate the lowest order nonzero correction to the ground state energy.

(For the 1D oscillator, H = p2

2m + 1
2m!2x2 = ~!(A†A+ 1

2) and [A,A†] = 1).
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#7: UNDERGRADUATE STAT MECH/THERMO

PROBLEM:

Two identical, monatomic, ideal gases with the same pressure P and the
same number of particles N but with di↵erent temperatures T1 and T2 are
confined in two vessels of volume V1 and V2. Then the vessels are connected.
The combined system remains thermally insulated. Find the change in en-
tropy after the system reaches equilibrium. Express your answer in terms
of T1, T2 and either N and Boltzmann constant or the heat capacity at
constant pressure. What would be the change in entropy if T1 = T2?
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#8: UNDERGRADUATE STAT MECH/THERMO

PROBLEM:

Consider a system of N distinguishable particles, at temperature T , with
two available energy levels: the groundstate is nondegenerate, with energy
✏1 = 0, and the excited energy level is doubly degenerate, with energy
✏2 ⌘ ✏.

(a) Determine the equilibrium values of the occupation numbers N1 and N2

(such that N1 +N2 = N) as a function of temperature.

(b) Determine the energy U of the system, as a function of temperature.

(c) Determine the specific heat (at constant volume) as a function of tem-
perature.



CODE NUMBER: ————– SCORE: ———— 10

#9: UNDERGRADUATE General

PROBLEM:

Consider a scull - a kind of long, thin rowboat. You may assume that the
drag force is independent of the mass of the boat and rowers.

Please write how the speed, v, of the scull scales as a function of only the
following quantities: v(n,X, ⇢, G). Here n is the number of rowers; X is the
constant power of each rower; ⇢ is the density of the fluid on which they
row; G is the volume per rower.

To improve v, is it better for Admiral Arius to try to scale up n, or X?

You may assume:

- Power/rower ⇠ X ⇠ const.

- ` is length of boat.

- Volume/per rower G ⇠ `3/n ⇠ const.
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#10: UNDERGRADUATE GENERAL

PROBLEM:

Describe one experiment (ancient, historical or contemporary) that would
allow you to measure the speed of light in a vacuum. You should assume
that the length of the meter and duration of the second are both perfectly
known. (a) Give with an overview of the method in one or two sentences. (b)
Describe the experimental equipment. (c) What measurements are made?
(d) What physics ideas (equations, principles, assumptions) are involved?
(e) List the primary potential sources of error. (f) Attempt to give a quan-
titative estimate for the overall error.



INSTRUCTIONS
PART 2 : PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. (E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.
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#11: GRADUATE MECHANICS

PROBLEM:

(a) Consider a binary star system, with stars of masses, m1 and m2, in a
circular orbit of radius r0, with period ⌧ , thanks to the attraction of
classical, Newtonian gravity (you can ignore general relativity e↵ects).
Derive Kepler’s third law relation between r0 and ⌧ . [1 point]

(b) Suppose that the masses of the binary star system are m1 = Msun and
m2 = 15Msun (here Msun is the solar mass unit, the mass of our sun),
and that r0 = 4AU (four times the distance between the earth and
the sun). Find the orbit period, ⌧ , in units of years. [4 points]

(c) Some mischievous aliens are playing with their new weapon / toy. By
the push of a button, they cause the two stars to suddenly stop moving.
Right after they push the button, the stars are separated by the same
distance r0, but have zero velocity. How long do the aliens now have
to wait, in years, before they can enjoy watching the two stars collide?
(You might, or might not, be interested to know that

R 1
0

dup
u�1�1

=

2
R ⇡/2
0 sin2 ✓d✓ = ⇡/2, where u = sin2 ✓ is used in the second step.) [4

points]

(d) Is such an alien toy possible? What physical principle does it possibly
violate? Can you suggest a way to make it work, without violating
anything? Just a few comments here is su�cient. [1 point].
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#12: GRADUATE MECHANICS

PROBLEM:

A mass M is constrained to slide without friction on the track AB as shown
in the figure. A mass m is connected to M by a massless inextensible string
of length b.

(a) Write the Lagrangian for this system.

(b) Write the leading order Lagrangian, assuming small oscillations.

(c) Find the normal coordinates and describe them.

(d) Find expressions for the normal coordinates as a function of time, for
completely general initial conditions (identify your constants of inte-
gration).
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#13: GRADUATE E&M

PROBLEM:

In three spatial dimension (x,y,z) the scalar potential field �(x, y, z, t) from
a charged particle of charge Q at the origin (x,y,z) = (0,0,0) satisfies

r2�(x, y, z, t) = �4⇡Q�(x) �(y) �(z). (1)

(a) Explain where this equation comes from. It might be a good idea to
start with Maxwell’s equations.

Show the solution to this equation is

�(x, y, z, t) =
Q

R
, R2 = x2 + y2 + z2. (2)

(b) Now using Maxwell’s equations again, write the wave equation satisfied
by �(x, y, z, t) in the Lorentz gauge:

r ·A(x, y, z, t) +
1

c

@�(x, y, z, t)

@t
= 0. (3)

(c) Solve this equation in an inertial frame where the particle is seen moving
along the x-axis at a constant velocity v. Hint: the first part of this problem
is quite relevant.

(d) Find the vector potential ~A in the setup of parts (b) and (c).
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#14: GRADUATE E&M

PROBLEM:

Consider a paramagnetic sphere of radius a, with magnetic permeability µ,
and conductivity �.

(a) The sphere is in the presence of a constant external magnetic field ~Bext =
B0bz. Find the total magnetic field ~B everywhere, inside and outside the
sphere, and the sphere’s magnetization density ~M .

(b) Now take ~Bext = B0e
�i!tbz (the real part). Find ~E inside the sphere, to

leading order in a!/c.

(c) In the same setup and approximation as part (b), find the eddy current
distribution in the sphere, and the average power absorbed (heat loss) by
the sphere.
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#15: GRADUATE QUANTUM MECHANICS

PROBLEM:

Consider the Hamiltonian of two particles (labeled by the subscripts 1, 2),
each in a 3d harmonic oscillator potential:

H =
~p21
2m

+
~p22
2m

+
1

2
m!2~r21 +

1

2
m!2~r22 + Vint,

The two particles are identical and of spin 1
2 . (There is no spin-orbit

coupling.) The interaction

Vint = �✏�3(~r1 � ~r2)

will be treated as a small perturbation.

(a) Working to zero-th order, ✏0, (i.e. dropping Vint), what are the energy
eigenvalues, and what is the form of the energy eigenfunctions? You don’t
need to derive the precise spatial dependence of the 1d harmonic oscillator
eigenfunctions – just write the formal form of the wavefunction in terms of
such quantities, taking care to properly label for example how the energy
levels appear. Especially take care with regard to the particles being identi-
cal and include their spin degrees of freedom, accounting for all possibilities.
How many integers etc. are needed to specify the states? Be sure that your
energies and eigenfunctions depend on all these labels.

(b) Again, working to order ✏0, what is the energy, degeneracy, and total
spin quantum number(s) of the ground state? Write the actual ground state
wavefunction(s), including the spin degrees of freedom.

(c) What is the shift of the ground state energy to first order in Vint, i.e. ✏1?

(d) Accounting for Vint qualitatively, assuming that it is repulsive (✏ < 0),
what is the spin S and degeneracy of the first excited state?
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#16: GRADUATE QUANTUM MECHANICS

PROBLEM: Quantum interference versus measurement of which-way
information

Consider a double-slit interference experiment, described by a quantum sys-
tem with two orthonormal states (call them | "i and | #i), representing
the possible paths taken by the particles. A particle emerging in state | "i
produces a wavefunction at the screen of the form  "(x), (where x is a co-
ordinate along the screen) while a particle emerging in state | #i produces
the wavefunction  #(x). The evolution from the wall with the slits to the
screen is linear in the input state.

As the source repeatedly spits out particles, the screen counts how many
particles hit at each location x.

Suppose, for simplicity, that  "(x) = eik"x, #(x) = eik#x, where k", k# are
some real constants.

1. If the particles are all spat out in the state | "i, what is the x-
dependence of the resulting pattern P"(x)?

2. If the particles are all spat out in the (normalized) state

| i = µ| "i+ �| #i ,
what is the x-dependence of the resulting pattern, P (x)? Assume
µ,� are real.

Now we wish to take into account interactions with the environment, which
we will model by another two-state system, with Hilbert space HE . Suppose
these interactions are described by the hamiltonian

H = �z ⌦M

acting on H2⌦HE , where �z = | "ih" |� | #ih# | acting on the Hilbert space
H2 of particle paths, and M is an operator acting on the Hilbert space of
the environment.

Suppose the initial state of the whole system is

| 0i ⌘ (µ| "i+ �| #i)⌦ | "iE ,
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and that
M = m�x = m (| "ih# |+ | #ih" |)E .

3. Find | (t)i, the state of the whole system at time t.

4. How does the interference pattern depend on x and t? For simplicity,
consider the case where µ = � = 1p

2
.

5. Interpret the previous result in terms of the time-dependence of the
entanglement between the two qbits.

6. What would happen if instead the initial state of the environment were
an eigenvector of M?
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#17: GRADUATE STAT MECH

PROBLEM: A black hole as a thermodynamic system

There is a powerful analogy between the physics of black holes and thermo-
dynamics. A static Schwarzchild black hole is a hole in space, characterized
by a radius RH , and a mass M . In equilibrium, these two parameters are
related by

RH = 2GNM/c2,

where GN is Newton’s constant and c is the speed of light. You should
regard this as an equation of state.

Here is the dictionary that relates black hole properties to thermodynamic
variables: The internal energy of a static Schwarzchild black hole is E =
Mc2. The entropy is

SBH =
kBc

3

~
A

4GN

where A is its surface area, 4⇡R2
H . [Note that the resulting thermodynamic

system has only one independent thermodynamic variable.]

1. By demanding that the first law of thermodynamics applies to black
holes, compute the temperature of a static Schwarzchild black hole of
mass M .

2. Compute the specific heat of the Schwarzchild black hole. What is the
physical consequence of its sign?

3. An intermediate step which can be useful for the next part, and doesn’t
involve black holes: What is the entropy of thermal radiation in a box
of volume V , Sphotons(T, V )? You may give your answer in terms of
an unspecified constant prefactor.

4. Consider a black hole in a box of volume V with adiabatic walls, in
equilibrium with the thermal radiation. We would like to determine
whether the black hole evaporates. Proceed as follows:

Suppose a fraction x of the total energy is in the black hole, and the
rest is in the thermal radiation. Derive an equation determining the
equilibrium value of x. What is the equilibrium value of x when the
volume is large?
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#18: GRADUATE STAT MECH

PROBLEM:

Electrons in metal can be approximately considered as free electron gas in
three dimensions. Let m denote the electron mass. Consider a system with
electron density n, and assume that there is no spin polarization.

1. Derive the relation between the Fermi wavevector kf and the electron
density n.

2. Calculate the average kinetic energy EK per electron at T = 0K.
Express EK in terms of the Fermi energy defined as ✏f = ~2

2mk2f .

3. Qualitatively explain the scaling of specific heat of the metal with
temperature T , for kBT ⌧ ✏f . How is it di↵erent from the specific
heat of the ideal Boltzmann gas? Can you present an intuitive reason?

4. Now let us further consider the e↵ect of Coulomb interaction among
electrons. Estimate the average Coulomb interaction Ec among elec-
trons.

5. Usually when we say interactions are strong or weak, it is not based
on the absolute value of Ec, but actually based on the dimensionless
ratio defined as rs = Ec/EK .

Rewrite rs as the ratio between two length scales up to a constant at
the order of one. What are these two length scales? (Hint: one of
them is made of fundamental constants.) Will the interaction e↵ect
be weakened or strengthened as the electron density n increases?

Can you estimate the order of the typical value of rs in metals? Are
they in the weak interaction regime?
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#19: GRADUATE MATH

PROBLEM:

Recall the Laplace transform, f(t) ! F (s), and its inverse F (s) ! f(t):

F (s) =

Z 1

0
f(t)e�stdt, f(t) =

1

2⇡i

Z c+i1

c�i1
F (s)estds,

where the latter integral is on a contour parallel to the imaginary s axis,
and c is a constant.

(a) Find the function f(t) for which

F (s) =
b

(s+ a)2 + b2
, a, b = positive constants.

Don’t forget to determine f(t) for both positive and negative t, discuss each
case explicitly and plot the function f(t).

(b) Consider a series LRC circuit, with inductor, resistor, and capacitor
specified by L, R, and C (all constants in t). The circuit consists of these
three in a closed circuit, together with a battery that supplies constant
voltage V0. The circuit has a switch, which is open (breaking the current
loop) for t < 0 and closed for t � 0. At time t = 0, the conductor has a
charge Q0 = 0. Write the equations (for t � 0) which need to be solved in
order to find the charge Q(t) on the conductor and the current I(t) in the
circuit.

(c) Let I(s) be the Laplace transform of I(t). Using the results of part (b),
solve for I(s).

(d) Using the results from the above parts, solve for I(t). Be sure that your
solution satisfies the boundary conditions.
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#20: GRADUATE GENERAL

PROBLEM: When the universe is about 400,000 years old, protons are at 3000
K, their density is np = 2 ⇥ 108 protons per m3 and only three species are
important for electromagnetic interactions: protons, electrons and photons.
You may need various constants; e = 1.6 ⇥ 10�19 C, me = 9.1 ⇥ 10�31 kg,
k = 1.38⇥ 10�23 J/K, ✏0 = 8.85⇥ 10�12m�3kg�1s4A2, �T = 6.7⇥ 10�29 m2

and the baryon to photon (number density) ratio is np/n� = 6⇥ 10�10.

(a) Why do we not consider neutrinos, dark matter and dark energy when
we consider significant electromagnetic interactions?

(b) Give arguments and equations leading to a quantitative estimate for
the time scale (in seconds) for an electron to significantly change its kinetic
energy through interactions with protons, when electrons are at T=3000
K. Hint: find the Coulomb interaction cross section by taking the impact
parameter for an e-p interaction such that the electromagnetic potential
energy equals the electron’s kinetic energy. Use this to find the time between
interactions.

(c) What is the time scale for photons to exchange energy with the e and p?
Hint: find the interaction time between photons and electrons, associated
with Thompson scattering. Estimate the associated fractional energy change
per scattering. Thereby find the time scale needed to establish thermal
equilibrium between electrons and photons.

(Fact:) One can likewise compute the time scale for a proton to significantly
change its kinetic energy through interactions with electrons, but we will not
ask you to do this computation here. It turns out that this time scale is
intermediate between the times computed in parts (b) and (c). The times
are all less than the lifetime of the universe.

(d) What do the results mean? State the very simple prediction that follows
from these results.



INSTRUCTIONS
PART I : PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. (E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.
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#1: UNDERGRADUATE MECHANICS

PROBLEM:

A rigid uniform bar of mass m and length L is supported in equilibrium
in a horizontal position by two massless springs with the spring constant
k attached one at each end. The motion of the bar is constrained to the
xz plane. The bar center of gravity is constrained to move parallel to the
vertical z axis. Gravity points down along the z axis. Find the frequency
of vibration for symmetric (i.e. symmetric under exchange of the bar ends)
mode and for antisymmetric mode of the system.

SOLUTION:

Let the vertical displacements of the bar ends from the equilibrium positions
be z1 and z2. For the center of mass C, the law of motion gives

m

2
(z̈1 + z̈2) = �k(z1 + z2)�mg. (1)

The torque equation gives for small z1 and z2

I0
L
(z̈2 � z̈1) = �L

2
k(z2 � z1), (2)

where I0 = mL2/12 is the bar moment of inertia about C.

The gravity term merely determines the equilibrium position and does not
a↵ect the vibration frequencies. From (1) and (2), the frequency of symmet-
ric mode with z1 = z2 is !

s

=
p

2k/m and the frequency of antisymmetric
mode with z1 = �z2 is !

a

=
p

6k/m.
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#2: UNDERGRADUATE MECHANICS

PROBLEM:

Two cylinders with equal radii R are rotating with the same angular velocity,
⌦, but in opposite directions. Take the axes of the cylinders parallel to the
by axis, both at height z = 0, and at x = ±`/2; see the figure (next page).
A board with a mass m and length L is placed on the cylinders slightly o↵-
center: let x0 be the initial x-location of its center of mass. The coe�cient of
friction between the cylinders and the board is µ. Describe mathematically
the ensuing motion of the board.
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SOLUTION:

The center of mass of the board is shifted to the right with respect to the
plane of symmetry of the two rotating cylinders by a distance x. There are 3
forces acting on the board along the vertical axes: the gravity, mg, and two
reaction forces, ~N1 and ~N2. Because the board is not rotating, the torques
with respect to a point of the board equidistant from the cylinders should
add up to zero: N1`/2+mgx�N2`/2 = 0, resulting in N2 �N1 = 2mgx/`.
The net force acting on the board in the horizontal plane is the sum of two
friction forces, F2�F1 = µ(N2�N1) = 2µmgx/`. One can see that this force
acts as a restoring force, whose magnitude is proportional to the deviation,
x, such that the system is similar to a mass on a spring and 2µmg/` similar
to the spring constant. Therefore, x(t) = x0 cos!t, with ! =

p

2µg/`.
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#3: UNDERGRADUATE E&M

PROBLEM:

A long coaxial cable consists of two concentric cylindrical conductors. The
inner conductor is a solid cylinder with a radius a. The outer conductor
is a thin cylindrical shell with a radius b > a. The cable carries current
I, which flows forward along the inner conductor and backward along the
outer conductor. The current is evenly distributed over the cross-section of
the inner conductor and over the surface of the outer conductor. Find the
inductance of the cable per unit length.

SOLUTION:

Solution. The magnetic field at r < a, is found from B · 2⇡r = µ0I
encl

=
µ0Ir

2/a2 as B = µ0Ir/2⇡a2. The magnetic field at a < r < b is B =
µ0I/2⇡r. The energy of the magnetic field per unit length in the inner
conductor is

E1 =
1

2µ0

Z

a

0
B22⇡rdr =

µ0I
2

16⇡

The energy of the magnetic field in the annular gap is

E2 =
1

2µ0

Z

b

a

B22⇡rdr =
µ0I

2

4⇡
ln(b/a).

Hence,

E = E1 + E2 =
µ0

4⇡

✓

1

4
+ ln(b/a)

◆

I2 ⌘ 1

2
LI2.

The inductance per unit length, L, is thus

L =
µ0

2⇡

✓

1

4
+ ln(b/a)

◆

.
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#4: UNDERGRADUATE E&M

PROBLEM:

Imagine that magnetic monopoles are found to exist. We then need to revise
Maxwell’s equations to include magnetic charges. We assume that for the
static case the magnetic version of Coulomb law is ~B = q

m

r

2 r̂ (Gauss unit),

or ~B = µ0
4⇡

q

m

r

2 r̂ (SI unit).

1) What is the Gauss’s law in the di↵erential form for magnetic monopoles in
the static case, i.e. r· ~B(~r) =? Use the ⇢

m

(~r) to denote the monopole density.
In following, we assume this magnetic version of Gauss law is generally valid
not just for statics.

2) Magnetic charges must be conserved. Write down the associated di↵er-
ential form of magnetic charge conservation in terms of ⇢

m

and ~j
m

, where
~j
m

(~r) is the monopole current density.

3) Show that only modifying the r · ~B term of the Maxwell equation would
not maintain monopole charge conservation. Find the appropriate modifi-
cation of Faraday’s law, needed to maintain monopole charge conservation.

4) Imagine an infinitely long wire carrying a steady monopole current I
m

along the ẑ-direction. Find the associated electric field ~E(⇢,�, z) in cylin-
drical coordinates.

SOLUTION:

1) r · ~B(~r) = 4⇡⇢
m

(~r), or, r · ~B(~r) = µ0⇢m(~r).

2)

@

@t
⇢
m

+r ·~j
m

(~r) = 0. (3)

3) From the previous version of r⇥E = �1
c

@

@t

~B, we have 0 = r · (r⇥E) =

�1
c

@

@t

(r · ~B) = �4⇡
c

@

@t

⇢
m

(~r). This is di↵erent from the monopole charge
conservation law above.

We should modify the Faraday’s law as

r⇥ ~E = �1

c

@

@t
~B � 4⇡

c
~j
m

. (4)
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Or,

r⇥ ~E = � @

@t
~B � µ0~jm. (5)

Then

r · (r⇥ ~E) = �4⇡

c

n @

@t
⇢
m

+r ·~j
m

(~r)
o

= 0 (6)

4) For the steady state, we have a monopole current version of the Ampere’s
law r⇥ ~E = �4⇡

c

~j
m

. Then
R

~dl · ~E = �4⇡
c

I
m

, thus

2⇡rE = �4⇡

c
I
m

(7)

Or, E = 2⇡
cr

I
m

. E is along the tangent direction, and the minus sign means
that E’s direction follows the left-hand rule.
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#5: UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: At t = 0, an electron, with magnetic moment ~µ = �e~
2mc

~�, is in the
spin state

�(t = 0) =

0

@

q

2
3 i

q

1
3

1

A .

A magnetic field B is applied in the z direction. a) Find the spin state of
the particle, as a function of time. b) Find the expectation value of S

y

as
a function of time. c) What is the probability, as a function of time, to
measure that the electron’s spin along the x direction is ~

2?

SOLUTION: One Bohr magneton is µ
B

= e~
2mc

. Let ! = eB

2mc

a) �(t) =

0

@

i
q

2
3e

�i!t

q

1
3e

i!t

1

A

b) h�(t)|S
y

|�(t)i = ~
2h�(t)|�y|�(t)i =

~
2

⇣

�i
q

2
3e

i!t

q

1
3e

�i!t

⌘

✓

0 �i
i 0

◆

0

@

i
q

2
3e

�i!t

q

1
3e

i!t

1

A

h�(t)|S
y

|�(t)i = ~
2

⇣

�i
q

2
3e

i!t

q

1
3e

�i!t

⌘

0

@

�i
q

1
3e

i!t

�
q

2
3e

�i!t

1

A

h�(t)|S
y

|�(t)i = �
p
2
3

~
2

�

e2i!t + e�2i!t
�

= �
p
2
3

~
22 cos(2!t) = �

p
2
3 ~ cos(2!t)

c) P (t) =

�

�

�

�

�

�

⇣

q

1
2

q

1
2

⌘

0

@

i
q

2
3e

�i!t

q

1
3e

i!t

1

A

�

�

�

�

�

�

2

=
�

�

�

ip
3
e�i!t + 1p

6
ei!t

�

�

�

2

P (t) = 1
3+

1
6+

ip
18
e�2i!t� ip

18
e2i!t = 1

2+
ip
18
(�2i sin(2!t)) = 1

2+
p
2
3 sin(2!t)
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#6: UNDERGRADUATE QUANTUM MECHANICS

PROBLEM:

An electron is in a three dimensional harmonic oscillator potential V (r) =
1
2m!2r2. A small electric field, of strength E

z

, is applied in the z direction.
Calculate the lowest order nonzero correction to the ground state energy.

(For the 1D oscillator, H = p

2

2m + 1
2m!2x2 = ~!(A†A+ 1

2) and [A,A†] = 1).

SOLUTION: Working in Cartesian coordinates the ground state had all three
of the oscillators in the n=0 state. The perturbation is V = eEz =

eE
q

~
2m!

(A
z

+A†
z

). First order perturbation theory gives zero energy shift

since
h000|A

z

+A†
z

|000i = 0.

In second order, we have

E
(2)
000 =

X

n

x

n

y

n

z

6=000

|hn
x

n
y

n
z

|V |000i|2

E
(0)
000 � E

(0)
n

x

n

y

n

z

= e2E2 ~
2m!

|h001|A†
z

|000i|2
3
2~! � 5

2~!
=

�e2E2

2m!2
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#7: UNDERGRADUATE STAT MECH/THERMO

PROBLEM:

Two identical, monatomic, ideal gases with the same pressure P and the
same number of particles N but with di↵erent temperatures T1 and T2 are
confined in two vessels of volume V1 and V2. Then the vessels are connected.
The combined system remains thermally insulated. Find the change in en-
tropy after the system reaches equilibrium. Express your answer in terms
of T1, T2 and either N and Boltzmann constant or the heat capacity at
constant pressure. What would be the change in entropy if T1 = T2?

SOLUTION:

The final entropy does not depend on how the final state is reached and can
be calculated as if the final state was reached isobarically because the final
pressure P

f

= P . The final temperature T
f

= (T1 + T2)/2. For each part
separately,

TdS = C
P

dT, (8)

where C
P

= 5
2Nk is the heat capacity at constant pressure. This gives

�S1 = C
P

ln
T
f

T1
and �S2 = C

P

ln
T
f

T2
(9)

Therefore,

�S = �S1 +�S2 = C
P

ln
T 2
f

T1T2
=

5

2
Nk ln

T 2
f

T1T2
. (10)

�S vanishes if T1 = T2 as expected.
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#8: UNDERGRADUATE STAT MECH/THERMO

PROBLEM:

Consider a system of N distinguishable particles, at temperature T , with
two available energy levels: the groundstate is nondegenerate, with energy
✏1 = 0, and the excited energy level is doubly degenerate, with energy
✏2 ⌘ ✏.

(a) Determine the equilibrium values of the occupation numbers N1 and N2

(such that N1 +N2 = N) as a function of temperature.

(b) Determine the energy U of the system, as a function of temperature.

(c) Determine the specific heat (at constant volume) as a function of tem-
perature.

SOLUTION:

(a)Use N⇤
1 = eµ/kT , and N⇤

2 = 2e(µ�✏)/kT . Fixing N⇤
1 + N⇤

2 determines µ:
eµ/kT (1 + 2e�✏/kT ) = eµ/kTZ = N . So

N⇤
1 =

N

1 + 2e�✏/kT

, N⇤
2 =

2Ne�✏/kT

1 + 2e�✏/kT

.

(b)

U = N⇤
2 ✏ =

2N✏e�✏/kT

1 + 2e�✏/kT

=
2N✏

2 + e✏/kT
.

(c)

C
V

=
dU

dT
|
✏

=
2N✏2

kT 2

e✏/kT

(2 + e✏/kT )2
.
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#9: UNDERGRADUATE General

PROBLEM:

Consider a scull - a kind of long, thin rowboat. You may assume that the
drag force is independent of the mass of the boat and rowers.

Please write how the speed, v, of the scull scales as a function of only the
following quantities: v(n,X, ⇢, G). Here n is the number of rowers; X is the
constant power of each rower; ⇢ is the density of the fluid on which they
row; G is the volume per rower.

To improve v, is it better for Admiral Arius to try to scale up n, or X?

You may assume:

- Power/rower ⇠ X ⇠ const.

- ` is length of boat.

- Volume/per rower G ⇠ `3/n ⇠ const.

SOLUTION: - Dimensional Analysis

Drag Force: F
d

⇠ ⇢v2`2
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so

Power required: P ⇠ vF
d

⇠ ⇢v3`2 ⇠ nX

Using ` ⇠ (nG)1/3

we solve for v:

v ⇠ n1/9X1/3/⇢1/3G2/9

- speed scales as n1/9

- better to increase rower power X rather than increase number of rowers!

Tell Admiral Arius....
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#10: UNDERGRADUATE GENERAL

PROBLEM:

Describe one experiment (ancient, historical or contemporary) that would
allow you to measure the speed of light in a vacuum. You should assume
that the length of the meter and duration of the second are both perfectly
known. (a) Give with an overview of the method in one or two sentences. (b)
Describe the experimental equipment. (c) What measurements are made?
(d) What physics ideas (equations, principles, assumptions) are involved?
(e) List the primary potential sources of error. (f) Attempt to give a quan-
titative estimate for the overall error.

SOLUTION:

Details of the answer will depend on the method chosen. Some common
methods are as follows. 1) Romer calculated c from the change in apparent
period of Jupiter’s moon Io as a function of the changing distance of the
Earth from Jupiter (and Io). This method was the topic of a question in a
recent qual. 2) Bradley used the change in apparent position of stars due to
the motion of the Earth around the sun (aberration) to estimate the ratio
of c to the Earth’s orbital velocity which itself is know from the year and
the Earth - sun distance. 3) The time for radio signals to travel from Earth
to spacecraft at positions known from the size of the solar system and the
gravity of planets they are orbiting gives the most accurate astronomical
measurement with an error of 2⇥ 10�11. 4) Fizeau and Foucault measured
the time for light to travel a known distance on Earth. Fizeau measured
time by requiring the the beam of light pass between di↵erent teeth in a
cog wheel rotating at a known speed. Foucault reflected both the outgoing
and return beams of light on a mirror rotating at a known speed and then
measured time from the angle between the two beams. A 1% error can
be obtained today in the class room using a fast oscilloscope to measure
time delay of a pulse from a laser or led. 6) From Maxwell, c2 = 1/(✏0µ0).
With µ0 defined as 4⇡ ⇥ 10�7 H/m, we measure ✏0 from the dimensions
and capacitance of a capacitor. The error in 1907 was < 10�4. 7) We can
find c = f� by measuring the wavelength � of a wave of known frequency
f . Wavelength can be measured as twice the distance between nodes of
standing waves in a cavity, a microwave cavity (error 10�5 in 1950) or, the
arms of an interferometer using a laser whose frequency is tied to a more
accurately known lower frequency signal (error 3⇥ 10�9 by 1972).
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#11: GRADUATE MECHANICS

PROBLEM:

(a) Consider a binary star system, with stars of masses, m1 and m2, in a
circular orbit of radius r0, with period ⌧ , thanks to the attraction of
classical, Newtonian gravity (you can ignore general relativity e↵ects).
Derive Kepler’s third law relation between r0 and ⌧ . [1 point]

(b) Suppose that the masses of the binary star system are m1 = Msun and
m2 = 15Msun (here Msun is the solar mass unit, the mass of our sun),
and that r0 = 4AU (four times the distance between the earth and
the sun). Find the orbit period, ⌧ , in units of years. [4 points]

(c) Some mischievous aliens are playing with their new weapon / toy. By
the push of a button, they cause the two stars to suddenly stop moving.
Right after they push the button, the stars are separated by the same
distance r0, but have zero velocity. How long do the aliens now have
to wait, in years, before they can enjoy watching the two stars collide?
(You might, or might not, be interested to know that

R 1
0

dup
u�1�1

=

2
R ⇡/2
0 sin2 ✓d✓ = ⇡/2, where u = sin2 ✓ is used in the second step.) [4

points]

(d) Is such an alien toy possible? What physical principle does it possibly
violate? Can you suggest a way to make it work, without violating
anything? Just a few comments here is su�cient. [1 point].

SOLUTION:

(a) Recall µ = m1m2/(m1 +m2) and that central circular motion has

F =
Gm1m2

r20
= µ!2r0 (1)

which gives

r30 =
G(m1 +m2)⌧2

4⇡2
(2)

(b) For the earth-sun system, m1 + m2 ⇡ Msun in the above formula. By
comparison, here r0 is 4 times bigger, and m1 +m2 is 16 times bigger, so ⌧
is 2 years.
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(c) This is a special case of central, non-circular motion. Use the energy
conservation equation

1

2µ
ṙ2 � Gm1m2

r
= E = �Gm1m2

r0
(3)

solve for dr/dt and integrate to get �t. So the time is (with u ⌘ r/r0)

tcollide =
r
3/2
0p

2G(m1 +m2)

Z 1

0

dup
u�1 � 1

=
⌧

2⇡
p
2
(⇡/2) =

⌧

4
p
2
=

1

2
p
2
years

(4)

(d) It removed energy and angular momentum, which should be conserved.
Perhaps they are radiated o↵ by lots of photons.
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#12: GRADUATE MECHANICS

PROBLEM:

A mass M is constrained to slide without friction on the track AB as shown
in the figure. A mass m is connected to M by a massless inextensible string
of length b.

(a) Write the Lagrangian for this system.

(b) Write the leading order Lagrangian, assuming small oscillations.

(c) Find the normal coordinates and describe them.

(d) Find expressions for the normal coordinates as a function of time, for
completely general initial conditions (identify your constants of inte-
gration).

SOLUTION:

(a) Use the coordinates as shown in the figure. M and m have coordinates

(x, 0), (x+ b sin ✓,�b cos ✓) (5)

respectively. The Lagrangian of the system is then

L = T � V =
1

2
Mẋ2 +

1

2
m(ẋ2 + b2✓̇2 + 2bẋ✓̇ cos ✓) +mgb cos ✓ (6)
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(b) For small oscillations, ✓ and ✓̇ are small quantities and we have the
approximate Lagrangian

L =
1

2
Mẋ2 +

1

2
m(ẋ2 + b2✓̇2 + 2bẋ✓̇ cos ✓) +mgb

✓
1� ✓2

2

◆
(7)

Lagrange’s equations
d

dt

✓
@L

@q̇i

◆
� @L

@qi
= 0 (8)

then give (m+M)ẋ+mb✓̇ = C, a constant, and ẍ+ b✓̈ + g✓ = 0.

(c) In the above, the first equation can be written as

(m+M)⌘̇ = C (9)

by setting

⌘ = x+
mb✓

m+M
. (10)

As (m+M)ẍ+mb✓̈ = 0, the second equation can be written as

mb✓̈

m+M
+ g✓ = 0. (11)

The two new equations of motion are now independent of each other. Hence
⌘ and ✓ are the new normal coordinates of the system. The center of mass
of the system occurs at a distance mb

m+M from M along the string. Hence
eta is the x-coordinate of the center of mass. Equation (5) shows that the
motion of the center of mass is uniform. The other normal coordinate, ✓, is
the angle the string makes with the vertical.

(d) Equation (5) has the solution

⌘ =
Ct

m+M
+D, (12)

and Equation (7) has solution

✓ = A cos(!t), (13)

where

! =

r
(m+M)g

Mb
(14)

is the angular frequency of small oscillations of the string, and A, B, C, D
are constants.
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#13: GRADUATE E&M

PROBLEM:

In three spatial dimension (x,y,z) the scalar potential field �(x, y, z, t) from
a charged particle of charge Q at the origin (x,y,z) = (0,0,0) satisfies

r2�(x, y, z, t) = �4⇡Q�(x) �(y) �(z). (15)

(a) Explain where this equation comes from. It might be a good idea to
start with Maxwell’s equations.

Show the solution to this equation is

�(x, y, z, t) =
Q

R
, R2 = x2 + y2 + z2. (16)

(b) Now using Maxwell’s equations again, write the wave equation satisfied
by �(x, y, z, t) in the Lorentz gauge:

r ·A(x, y, z, t) +
1

c

@�(x, y, z, t)

@t
= 0. (17)

(c) Solve this equation in an inertial frame where the particle is seen moving
along the x-axis at a constant velocity v. Hint: the first part of this problem
is quite relevant.

(d) Find the vector potential ~A in the setup of parts (b) and (c).

SOLUTION:

(a) It comes from ~r · ~E = 4⇡~⇢, and ~E = �r� (static), with ⇢ = Q�3(~x)
for a point charge at the origin. Then � = Q/r gives ~E = Qbr/r2, and
r2�(~r) vanishes for ~r 6= 0. The delta function at the origin can be seen viaH
~E · d~a = 4⇡Q.

(b)

The scalar potential satisfies the wave equation✓
r2 � 1

c2
@2

@t2

◆
�(x, y, z, t) = �4⇡Q�(y)�(z)�(x� vt), (18)
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which follows from Maxwell’s equations in the Lorentz gauge.

(c) Change variables to X = �(x � vt), Y = y, Z = z, and the equation
becomes ✓

@2

@X2
+

@2

@Y 2
+

@2

@Z2

◆
�(X,Y, Z) = �4⇡Q��3(X), (19)

with � = 1p
1�v2/c2)

. The solution of this, as above, is

�(x, y, z, t) =
Q�p

�2(x� vt)2 + y2 + z2)
. (20)

(d) The vector potential A(x, y, z, t) satisfies, in the Lorentz gauge,✓
r2 � 1

c2
@2

@t2

◆
A(x, y, z, t) = �4⇡Q

v

c
�(y)�(z)�(x� vt), (21)

leading to

A(x, y, z, t) =
Qv

c �p
�2(x� vt)2 + y2 + z2)

. (22)

Simple di↵erentiation then shows that the Lorentz gauge condition is satis-
fied.
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#14: GRADUATE E&M

PROBLEM:

Consider a paramagnetic sphere of radius a, with magnetic permeability µ,
and conductivity �.

(a) The sphere is in the presence of a constant external magnetic field ~Bext =
B0bz. Find the total magnetic field ~B everywhere, inside and outside the
sphere, and the sphere’s magnetization density ~M .

(b) Now take ~Bext = B0e
�i!tbz (the real part). Find ~E inside the sphere, to

leading order in a!/c.

(c) In the same setup and approximation as part (b), find the eddy current
distribution in the sphere, and the average power absorbed (heat loss) by
the sphere.

SOLUTION:

(a) The sphere gets a magnetization density and acts like a magnetic moment
for r > a, and has a constant magnetic field for r < a. One can use
the magnetic potential, and Legendre polynomials, finding that only ` = 1
contributes. Gauss’ law requires that br · ~B is continuous at r = a. Absence
of surface current density sources requires that br⇥ ~H is continuous at r = a.
One thus finds ~Bin = µ ~Hin, ~Hin = ~B0 � 4⇡

3
~M , and

~Bin = ~B0 +
8⇡

3
~M =

3µ

µ+ 2
~B0, ~M =

3

4⇡

µ� 1

µ+ 2
~B0, (23)

~Bout = ~B0 +
3(br · ~m)br � ~m

r3
, ~m =

4

3
⇡a3 ~M. (24)

(b) In this approximation, ~Bin is as found above, simply replacing ~B0 !
~B0e

�i!t, and ~Ein is found from ~r⇥ ~E = �1
c@

~B/@t. If we don’t recall how to
compute the curl in spherical coordinates, we can use the integrated form:H
@S

~E ·d~̀= i! 1
c

R
S
~Bin ·d~a. Clearly ~E points in the b� direction, so we should

take S to be a disk with boundary along the b� direction, i.e. a disk of radius
r sin ✓. The electric field is thus (the real part of)

~Ein ⇡ i
!

2c

3µB0

µ+ 2
r sin ✓b�e�i!t. (25)
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(c) The eddy current density is ~Jin = � ~Ein, with ~Ein as above. The time
averaged power loss is given by integrating 1

2
~Jin · ~Ein = 1

2�
~E2
in over the

sphere:

P =
1

2
�!2 9µ2B2

0

4c2(µ+ 2)2
(2⇡)

Z a

0
drr4

Z 1

�1
d(cos ✓)(1� cos2 ✓) (26)

=
3⇡a5�!2µ2B2

0

5c2(µ+ 2)2
. (27)
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#15: GRADUATE QUANTUM MECHANICS

PROBLEM:

Consider the Hamiltonian of two particles (labeled by the subscripts 1, 2),
each in a 3d harmonic oscillator potential:

H =
~p21
2m

+
~p22
2m

+
1

2
m!2~r21 +

1

2
m!2~r22 + Vint,

The two particles are identical and of spin 1
2 . (There is no spin-orbit

coupling.) The interaction

Vint = �✏�3(~r1 � ~r2)

will be treated as a small perturbation.

(a) Working to zero-th order, ✏0, (i.e. dropping Vint), what are the energy
eigenvalues, and what is the form of the energy eigenfunctions? You don’t
need to derive the precise spatial dependence of the 1d harmonic oscillator
eigenfunctions – just write the formal form of the wavefunction in terms of
such quantities, taking care to properly label for example how the energy
levels appear. Especially take care with regard to the particles being identi-
cal and include their spin degrees of freedom, accounting for all possibilities.
How many integers etc. are needed to specify the states? Be sure that your
energies and eigenfunctions depend on all these labels.

(b) Again, working to order ✏0, what is the energy, degeneracy, and total
spin quantum number(s) of the ground state? Write the actual ground state
wavefunction(s), including the spin degrees of freedom.

(c) What is the shift of the ground state energy to first order in Vint, i.e. ✏1?

(d) Accounting for Vint qualitatively, assuming that it is repulsive (✏ < 0),
what is the spin S and degeneracy of the first excited state?

SOLUTION:

(a) Writing the 1d SHO energy eigenstates as  n(x), and the 3d eigenstates
as  ~n(~x) =  n1(x) n2(y) n3(z), the eigenstates we’re after are antisymmet-
ric upon exchanging the two identical fermions:

Spin 0: ( ~n(~r1) ~m(~r2) +  ~m(~r1) ~n(~r2))⌦ |S = 0i,
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Spin 1: ( ~n(~r1) ~m(~r2)�  ~m(~r1) ~n(~r2))⌦ |S = 1, Sz = 1, 0,�1i,

where |S = 0i = 1p
2
(| + �i � | � +i) is antisymmetric, and |S = 1, Sz =

1, 0,�1i is the symmetric triplet. The energy is

E = (n1 + n2 + n3 +m1 +m2 +m3 + 3)~!.

The state is labeled by the six integers in ~n and ~m. The spin 1 states are
also labeled by the three choices Sz = 1, 0,�1.

(b) The ground state has ni = mi = 0, and E = 3~!. The spatial part
is symmetric, so the spin S = 0. The state is non-degenerate. Its energy
eigenfunction is

 ~0(~r1) ~0(~r2)⌦ |S = 0i,

where

 ~0(~r) =
⇣m!
⇡~

⌘3/4
exp(�~~r · ~r/2m!).

(c) The perturbation shifts the energy to leading order by

�E =

Z
d3 ~r1d

3 ~r2 (~r1, ~r2)
⇤V (~r1, ~r2) (~r1, ~r2) = �✏

Z
d3~r| (~r,~r)|2,

which is non-zero for the spatially symmetric wavefunction, and zero for the
spatially antisymmetric. In particular, for the groundstate, the shift is by

�E = �✏
⇣m!
⇡~

⌘3
Z

d3~r exp(�2~~r·~r/m!) = �✏
⇣m!
⇡~

⌘3
✓
⇡2~
m!

◆3/2

= �✏
✓
2m!

⇡~

◆3/2

Note that ✏ has units of EL3, where L is a length, and m!/~ has units of
1/L2, so the units are copacetic. The groundstate energy to O(✏) is

E0 = 3~! � ✏

✓
2m!

⇡~

◆3/2

.

(d) The first excited state has say ~n = (2, 1, 1) (and permutations), and
~m = 0. Since the interaction is repulsive, the spatially antisymmetric state
would have lower energy. So the spin is symmetric. The degeneracy is thus
the product of the spatial and spin degeneracies: 3 · 3 = 9.
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#16: GRADUATE QUANTUM MECHANICS

PROBLEM: Quantum interference versus measurement of which-way
information

Consider a double-slit interference experiment, described by a quantum sys-
tem with two orthonormal states (call them | "i and | #i), representing
the possible paths taken by the particles. A particle emerging in state | "i
produces a wavefunction at the screen of the form  "(x), (where x is a co-
ordinate along the screen) while a particle emerging in state | #i produces
the wavefunction  #(x). The evolution from the wall with the slits to the
screen is linear in the input state.

As the source repeatedly spits out particles, the screen counts how many
particles hit at each location x.

Suppose, for simplicity, that  "(x) = eik"x, #(x) = eik#x, where k", k# are
some real constants.

1. If the particles are all spat out in the state | "i, what is the x-
dependence of the resulting pattern P"(x)?

2. If the particles are all spat out in the (normalized) state

| i = µ| "i+ �| #i ,

what is the x-dependence of the resulting pattern, P (x)? Assume
µ,� are real.

Now we wish to take into account interactions with the environment, which
we will model by another two-state system, with Hilbert space HE . Suppose
these interactions are described by the hamiltonian

H = �z ⌦M

acting on H2⌦HE , where �z = | "ih" |� | #ih# | acting on the Hilbert space
H2 of particle paths, and M is an operator acting on the Hilbert space of
the environment.

Suppose the initial state of the whole system is

| 0i ⌘ (µ| "i+ �| #i)⌦ | "iE ,
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and that
M = m�x = m (| "ih# |+ | #ih" |)E .

3. Find | (t)i, the state of the whole system at time t.

4. How does the interference pattern depend on x and t? For simplicity,
consider the case where µ = � = 1p

2
.

5. Interpret the previous result in terms of the time-dependence of the
entanglement between the two qbits.

6. What would happen if instead the initial state of the environment were
an eigenvector of M?

SOLUTION:

1.
P"(x) = | "(x)|2 = |eik"x|2 = 1.

It is featureless.

2.

P (x) = |µ "(x) + � #|2 = |µ|2P" + |�|2P# + (µ�?eik"xe�ik#x + cc)

= |µ|2 + |�|2 + 2Re
⇣
µ�?eix(k"�k#)

⌘
= 1 + 2µ� cos (x(k" � k#)) .

(In the last step we used the fact that | i is normalized.)

3.
| (t)i = e�iHt| 0i = e�i(�z)⌦Mt (µ| "i+ �| #i)⌦ |miE

= µ| "i ⌦ e�iMt| 0iE + �| #i ⌦ e+iMt| 0iE

4. The observable we are measuring acts as the identity on the environ-
ment, so the resulting pattern is

P (x) = ||µ "(x)e
�imt�x | 0 ="iE + � #e

+imt�x | 0 ="iE ||2

=
�
|µ|2P" + |�|2P#

�
h" |eimt�x

e�imt�x | "iE+2Re
⇣
µ�? "(x) 

?
#(x)h" |e�imt�x

e�imt�x | "iE
⌘

=
�
|µ|2 + |�|2

�
+ 2Re

⇣
µ�? "(x) 

?
#(x)h" |e�2imt�x | "iE

⌘
= 1+2Re

�
µ�? "(x) 

?
#(x) cos 2mt

�
= 1+2µ� cos (x(k" � k#)) cos 2mt
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5. The strength of the interference pattern oscillates with frequency 2m.
When t = ⇡

m , the interference pattern disappears. This is when the
two qbits are maximally entangled – at this time, the environment
qbit has ‘measured’ which slit the particle traversed.

6. Given the assumption that

M| 0iE = m| 0iE

the state at time t is

| (t)i = µ| "i ⌦ e�imt�x | "iE + �| #i ⌦ e+imt�x | "iE .

and the pattern is

P (x) = ||µ "(x)e
�imt| 0iE + � #e

+imt| 0iE ||2

= 1 + 2µ� cos(x(k" � k#)� 2mt)

– in this case the amplitude of the pattern is time-independent (though
the pattern will ‘shimmer’ a bit). In this case the environment never
measures the which-way information.
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#17: GRADUATE STAT MECH

PROBLEM: A black hole as a thermodynamic system

There is a powerful analogy between the physics of black holes and thermo-
dynamics. A static Schwarzchild black hole is a hole in space, characterized
by a radius RH , and a mass M . In equilibrium, these two parameters are
related by

RH = 2GNM/c2,

where GN is Newton’s constant and c is the speed of light. You should
regard this as an equation of state.

Here is the dictionary that relates black hole properties to thermodynamic
variables: The internal energy of a static Schwarzchild black hole is E =
Mc2. The entropy is

SBH =
kBc

3

~
A

4GN

where A is its surface area, 4⇡R2
H . [Note that the resulting thermodynamic

system has only one independent thermodynamic variable.]

1. By demanding that the first law of thermodynamics applies to black
holes, compute the temperature of a static Schwarzchild black hole of
mass M .

2. Compute the specific heat of the Schwarzchild black hole. What is the
physical consequence of its sign?

3. An intermediate step which can be useful for the next part, and doesn’t
involve black holes: What is the entropy of thermal radiation in a box
of volume V , Sphotons(T, V )? You may give your answer in terms of
an unspecified constant prefactor.

4. Consider a black hole in a box of volume V with adiabatic walls, in
equilibrium with the thermal radiation. We would like to determine
whether the black hole evaporates. Proceed as follows:

Suppose a fraction x of the total energy is in the black hole, and the
rest is in the thermal radiation. Derive an equation determining the
equilibrium value of x. What is the equilibrium value of x when the
volume is large?
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SOLUTION:

1.
1

T
=

@S

@E
=

1

c2
@SBH

@M
=

8⇡GN

~c3 M.

2. From above, we have

E(T ) = M(T )c2 =
~c

8⇡GN

1

T

so

CV =
@E

@T
= � ~c

8⇡GN

1

T 2
< 0 .

Negative specific heat means instability. In fact, a black hole evapo-
rates, because it radiates like a blackbody at temperature T into empty
space. Alternatively, a material made from an ensemble of black holes
is unstable, since the black holes will merge into a larger black hole.

3. S(T, V ) / V T 3. This follows from dimensional analysis: the only
scales in the problem are the temperature and the volume; the en-
tropy is extensive, so it must be proportional to V ; to make some-
thing dimensionless we must multiply by T 3. Alternatively, recall that
E = bV T 4. Then dE|V = TdS is a di↵erential equation for S,

4. The equilibrium configuration will maximize the total entropy

S(x) = SBH(EBH = xE = M(x)c2) + Sphotons(Ephotons = (1� x)E),

keeping the total energy E = EBH + Ephotons fixed. We can get the
same answer by setting the temperatures equal. The energy in the
blackbody radiation is

(1� x)E = bV T 4 ,

where the constant b is related to the Stefan-Boltzmann constant by
b = 4�/c. The energy in the BH is EBH = xE = M(x)c2, but from
above the temperature is

TBH = Tphotons = T =
~c

8⇡GN

1

M(x)

which gives

xE = M(x)c2 =
~c

8⇡GN

1

T
.
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We now have two conditions on x, and we find:

x(1� x)1/4 =
↵c2(bV )1/4

E5/4
.

The LHS is bounded above by some fraction of 1. So if the RHS is
small, there’s an equilibrium solution for x. But if we make the box
big enough (large V ), we’ll eventually exceed that fraction. In that
case x ! 0 is where the entropy is biggest: no black hole.
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#18: GRADUATE STAT MECH

PROBLEM:

Electrons in metal can be approximately considered as free electron gas in
three dimensions. Let m denote the electron mass. Consider a system with
electron density n, and assume that there is no spin polarization.

1. Derive the relation between the Fermi wavevector kf and the electron
density n.

2. Calculate the average kinetic energy EK per electron at T = 0K.
Express EK in terms of the Fermi energy defined as ✏f = ~2

2mk2f .

3. Qualitatively explain the scaling of specific heat of the metal with
temperature T , for kBT ⌧ ✏f . How is it di↵erent from the specific
heat of the ideal Boltzmann gas? Can you present an intuitive reason?

4. Now let us further consider the e↵ect of Coulomb interaction among
electrons. Estimate the average Coulomb interaction Ec among elec-
trons.

5. Usually when we say interactions are strong or weak, it is not based
on the absolute value of Ec, but actually based on the dimensionless
ratio defined as rs = Ec/EK .

Rewrite rs as the ratio between two length scales up to a constant at
the order of one. What are these two length scales? (Hint: one of
them is made of fundamental constants.) Will the interaction e↵ect
be weakened or strengthened as the electron density n increases?

Can you estimate the order of the typical value of rs in metals? Are
they in the weak interaction regime?

SOLUTION:

1)

n = 2

Z
d3k

(2⇡)3
(28)

n =
2

8⇡3

4⇡

3
k3f (29)

kf = (3⇡2n)1/3 (30)
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2)

EK =

R k
f

0 k2dk ~k2
2mR k

f

0 k2dk
(31)

=
~2
2m

k5f
5
/
k3f
3

=
3

5
✏f (32)

3) The Fermi distribution function n(k) at T = 0K is a step function ✓(k <
kf ). At finite temperature it is smeared around the k ⇠ kf within an energy
window of kBT around ✏f .

Due to this reason, most fermions deeply inside the Fermi surface are frozen,
and thus do not contribute to specific heat. Fermions that contribute to spe-
cific heat are those within a shell around the Fermi surface with a thickness
of kBT , and thus the specific heat of Fermi gas scales linearly with T as
T ⌧ Tf .

4) Ec = e2/d with d = n�1/3.

5)

rs = Ec/EK ⇡ e2/d
~2/(md2)

⇡ d
~2/(me2)

= d/aB, where aB is the Bohr radius.

The more dense the electron gas is, the weaker the interaction e↵ect is.

The typical value of lattice constants in metal is a few Å, and thus rs is
typically at the order of 5 ⇠ 10, and thus actually electrons in metal are not
in the weak interaction regime.
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#19: GRADUATE MATH

PROBLEM:

Recall the Laplace transform, f(t) ! F (s), and its inverse F (s) ! f(t):

F (s) =

Z 1

0
f(t)e�stdt, f(t) =

1

2⇡i

Z c+i1

c�i1
F (s)estds,

where the latter integral is on a contour parallel to the imaginary s axis,
and c is a constant.

(a) Find the function f(t) for which

F (s) =
b

(s+ a)2 + b2
, a, b = positive constants.

Don’t forget to determine f(t) for both positive and negative t, discuss each
case explicitly and plot the function f(t).

(b) Consider a series LRC circuit, with inductor, resistor, and capacitor
specified by L, R, and C (all constants in t). The circuit consists of these
three in a closed circuit, together with a battery that supplies constant
voltage V0. The circuit has a switch, which is open (breaking the current
loop) for t < 0 and closed for t � 0. At time t = 0, the conductor has a
charge Q0 = 0. Write the equations (for t � 0) which need to be solved in
order to find the charge Q(t) on the conductor and the current I(t) in the
circuit.

(c) Let I(s) be the Laplace transform of I(t). Using the results of part (b),
solve for I(s).

(d) Using the results from the above parts, solve for I(t). Be sure that your
solution satisfies the boundary conditions.

SOLUTION:

(a)

f(t) =
1

2⇡i

Z
est

b

(s+ a)2 + b2

For t < 0 we close the contour at infinity at positive real s, and no poles
are enclosed, so f(t < 0) = 0. For t > 0 we close the contour at infinity at
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negative real s, and get poles at s = �a± ib. Evaluating the residues there,
this gives

f(t) = ⇥(t)e�at sin bt,

where ⇥(t) is the step function: ⇥(t < 0) = 0, ⇥(t > 0) = 1.

(b)

IR+ L
dI

dt
+

Q

C
= V (t) = V0⇥(t), I(t) =

dQ

dt

taking a derivative gives

R
dI

dt
+ L

d2I

dt2
+

I

C
= V0�(t).

(c) The Laplace transform converts d
dt ! �s, so we get

(�Rs+ Ls2 +
1

C
)I(s) = V0.

We can write this as

I(s) =
V0

L

1

(s+ a)2 + b2
, a ⌘ R/2L, b ⌘

r
1

LC
� R2

4L2
.

(d) Using the result from parts (a) and (c), we have

I(t) =
V0

L

1

b
⇥(t)e�at sin(bt).
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#20: GRADUATE GENERAL

PROBLEM: When the universe is about 400,000 years old, protons are at 3000
K, their density is np = 2 ⇥ 108 protons per m3 and only three species are
important for electromagnetic interactions: protons, electrons and photons.
You may need various constants; e = 1.6 ⇥ 10�19 C, me = 9.1 ⇥ 10�31 kg,
k = 1.38⇥ 10�23 J/K, ✏0 = 8.85⇥ 10�12m�3kg�1s4A2, �T = 6.7⇥ 10�29 m2

and the baryon to photon (number density) ratio is np/n� = 6⇥ 10�10.

(a) Why do we not consider neutrinos, dark matter and dark energy when
we consider significant electromagnetic interactions?

(b) Give arguments and equations leading to a quantitative estimate for
the time scale (in seconds) for an electron to significantly change its kinetic
energy through interactions with protons, when electrons are at T=3000
K. Hint: find the Coulomb interaction cross section by taking the impact
parameter for an e-p interaction such that the electromagnetic potential
energy equals the electron’s kinetic energy. Use this to find the time between
interactions.

(c) What is the time scale for photons to exchange energy with the e and p?
Hint: find the interaction time between photons and electrons, associated
with Thompson scattering. Estimate the associated fractional energy change
per scattering. Thereby find the time scale needed to establish thermal
equilibrium between electrons and photons.

(Fact:) One can likewise compute the time scale for a proton to significantly
change its kinetic energy through interactions with electrons, but we will not
ask you to do this computation here. It turns out that this time scale is
intermediate between the times computed in parts (b) and (c). The times
are all less than the lifetime of the universe.

(d) What do the results mean? State the very simple prediction that follows
from these results.

SOLUTION:

(a) These are unimportant because all are observed to be electromagneti-
cally neutral. Neutrinos are as common as photons but do not participate
in electromagnetic interactions. Dark matter is not known to be a particle.
If it is, its mass density exceeds that of protons by about a factor of 7, but
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astronomical observations show that it has minimal if any electromagnetic
interactions. Dark energy has no known electromagnetic iteration and ob-
servations indicate it likely has negligible energy density when the universe
is 3000 K.

(b) There is a significant change in the KE of an electron if its direction of
motion changes by some large angle, say 90 degrees. This happens when the
impact parameter for a e-p interaction, rc gives electromagnetic potential
energy equal to the electron KE, or e2/(4⇡✏0rc) ⇡ 1

2mv2 ⇡ 3
2kT. Then the

Coulomb interaction cross-section

�c = ⇡r2c ⇡ ⇡

 
e2

4⇡✏0
3
2kT

!2

⇡ 1.4⇥ 10�17

✓
T

3000K

◆�2

m2 (33)

The time between interactions is tc = 1/(ne�cv) where ne = np by charge
neutrality (we ignore the extra proton and electron with the Helium nuclei),
and the mean velocity of electrons is v =

p
3kT/me = 400, 000 m/s, or

tc = 180 s.

(Fact aside (not graded):) Typical interactions between protons and elec-
trons will not significantly change the proton KE because the proton mass is
larger. Since momentum is conserved, the interaction considered in (b) will
change the proton velocity by an amount smaller by a factor of (me/mp).
If we assume the e and p have the same temperature (to be justified by the
results) then p and e have the same mean KE, and the proton velocities are
smaller by vp = ve

p
me/mp. The fractional change in the KE of the proton

per interaction is

�KEp

KEp
⇡ (�vp)2

v2p
⇡
✓
me

mp

◆
�KEe

KEe
, (34)

where the last factor is of order 1 in 180 s from (b). We need (mp/me)
steps taking 300,000 s to significantly change the proton KE. This is the
time scale to establish thermal equilibrium between p and e. Since this is
much shorter than the age of the universe, and the time scale on which the
T changes, this equilibrium will be exact.

(c) The time between interactions of photons with elections is given by the
Thomson cross-section, tT = 1/(n��T c) = 170 s when the number density
of photons is n� = 2 ⇥ 108/6 ⇥ 10�10 = 3 ⇥ 1017 m�3. The energy change
per scattering is a fraction

�Ee

Ee
⇡ h⌫

mec2
⇡ 3kT

mec2
⇡ 1.5⇥ 10�6 (35)
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of the total electron energy at 3000 K. The time scale to establish thermal
equilibrium between electrons and photons is then 170 s/1.5 ⇥ 10�6 = 7 ⇥
107 s, again much less than the age of the universe and the time scale for
significant T change. This establishes that the photons and electrons are in
exact thermal equilibrium.

(d) We have shown that p, e and photons are all in thermal equilibrium,
and thence that all relevant matter and radiation is in thermal equilibrium.
This means that the photons from that time (today they are microwaves in
the cosmic microwave background) will have a precise black body spectrum,
as was shown by the COBE satellite in 1992.


