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PART I

PHYSICS DEPARTMENTAL EXAM — FALL 2002

SECTION 1
Problem 1. Mechanics
A circular wire hoop is rigidly attached on one side to a vertical axle (see figure). The axle and
hoop rotate about the vertical with angular velocity Q(¢) = Q,sinat. A bead of mass m slides
“without friction on the hoop. Gravity is directed vertically down, the radius of the hoop is a, and

the generalized coordinate 8 locates the position of the bead on the hoop.

)

a) Obtain a Lagrangian governing the motion of the bead.
b) Obtain the Hamiltonian.

c) Is the Hamiltonian equal to the energy of the bead?

d) Is the Hamiltonian conserved? |

e) Is the energy conserved?

.
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1. A circular wire hoop is rigidly attached on one side to a vertical axle
(see figure). The axle and hoop rotate about the vertical with angular
-velocity Q(t) = o sin wt. A bead of mass m slides without friction

on the hoop. Gravity is directed vertically down, the radius of the

-hoop ‘is a, and the generalized coordlnate 6 locates the p051t10n of the
bead on the hoop.

,(a) Obtain a Lagrangian'gdverning the motion of tﬁe bead.
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(b). Obtain the Hamiltonian.
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'(c)--Is'thé Hamiltoniah equal'to‘the energy of the bead?
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" (d) ‘Is the Hamiltonian conserved? .
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(e) Is the energy conserved?
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SECTION 1
PROBLEM 2. MECHANICS
Two point masses are connected by a massless string that passes through a hole in a smooth table
(see figure). The mass m rests on the table and the mass m, hangs below. Gravity is directed
vertically down, and the string is of length £. You may assume that the masses move in such a

way that the string remains taut and that neither mass comes near the hole.

Write down the Lagrangian for this system and determine two constants of the motion.



2) Two po1nt masses are. connected by a- mass]ess str1ng that passes through a ho]e Oh/
T ocdina smooth tabTe (see f1gure) The mass m rests. on ‘the tab]e and the mass m,
A ;f" hangs beTow. Grav1ty is directed vertlcally down and the str1ng is of. Iength L.
R “You may assume that the masses move.in such a way'that the string rema1ns taut and
- that ne1ther mass comes near the hole. : }

(a) Write down the La
the mot1on :

grangiaﬁ*fdrwthfs éyStem.and‘determine twd-constahtSVOf,

qu)‘ : (b) For the - 1n1t1a1 cond1t10ns (r 6) = (R 0) and (r 6) = (O m) where
'Q{ f;' ]w 2R > ng, what 15 the max1mum va]ue of r. reached by m]
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SECTION 2

PROBLEM3. E&M
A perfectly conducting sphere of radius a is uniformly magnetized with a magnetization of
magnitude M. It also has a net charge Q. Find the total angular momentum of the electromagnetic

field of this system.
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SECTION 2

PROBLEM 4. E&M

A long cylindrical nonmagnetic conductor of radius 4 has a coaxial cylindrical hole of radius 4
drilled along it. It carries a current I distributed uniformly over the cross secfion. Find the
magnetic energy associated with the magnetic field in a length L of the conductor. From this

determine the self-inductance of the same length L.
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SECTION 3

PROBLEM 5. STAT MECH/THERMAL

The pressure p in a spherical bubble of radius 7 is given by p = 0/2r, where 6 is a constant, A

bubble is in a vacuum and filled with v moles of ideal gas with heat capacity Cy at temperature
To. (Assume the heat capacity of the bubble wall is negligible.) Then a small metal particle with
heat capacity C at temperature T, comes in contact with the bubble. The bubble and solid radius
has increased by a factor of two.

a) What is the final temperature T in terms of 7,?

b) Calculate the total chaﬁge in entropy of the gas bubble and the solid as a result of this

process.
c) Calculate the initial temperature of the metal particle Tt in terms of the parameters given,

ie., Ty, Cy,C, v, and the gas constant R.



Physics 140A Midterm #2 11/16/92
- Code Number ‘ :

3. (36 pomts) The pressure, p, in a sphencal bubble of rad1us r is

given by p= , where o is a constant, A bubble is in a vacuum
and filled thh vV moles of ideal gas with heat capacity Cy at
temperature T,. [Assume the heat capacity of the bubble . wall
is negligible.] Then 2 small metal particle with heat capacity C
at . teniperature Tm comes in contact with the bubble, The
bubble and. solid reach 2 new equilibrium ‘at temperature Ty,
where the bubble: radius .has increased by a factor of two, -

a) What is thc fmal temperature, -Tf, in terms of To?
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3.  (cont'd)

b) ..C'alcuiate the total change .in entropy of the gas bubble
and the solid as a result of this processi__
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, in terms of the parameters given (ie., T, Cy, C, v, and the
") gas constant R)
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SECTION 3
PROBLEM 6. STAT MECH/THERM
A chain has N frictionless links of length L that can be oriented in four directions, up, down, left
and right, as shown. The top is tied to a fixed point and a weight of mass M is attached to the
bottom. The system is at temperature T in a gravitational field of strength g. (This is an ideal
chain, so it can cross itself.)
a) What are the relative probabilities of the four different orientations of the links Py, Py, Py,
and Py? |
b) Obtain an expression for the mean length L of the system at témperature T. Evaluate this
expression in the limit of high and low temperatures, stating clearly which is which.
c) Write down the partition function for this system.
d) Calculate the entropy of the system and evaluate this expression in the limit of high and

low temperatures.
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SECTION 4

PROBLEM 7. QUANTUM MECHANICS

An excited nucleus under study decays by the process of internal conversion , i.e., instead of
emitting a photon, it ejects one of the atomic electrons N = N +e. Let £ be the kinetic energy
of the electron and Ey the energy liberated in the decay. Compute the density of final states

p;(E) in a volume V as needed for Fermi’s golden rule. You should assume that the nucleus is

massive so that recoil can be neglected. What is the density of final states if the electron is non-

relativistic? What is the density of final states if the electron is highly relativistic?
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SECTION 4

PROBLEM 8. QUANTUM MECHANICS

A rotating system is described by the Hamiltonian

L+L I
p— +_.‘;_
21, 2l

with L the orbital angular momentum and ; and J3 inertial moments.
a) Comment on the symmetry of the system;
b) Write the Hamiltonian in a form that ohly involves compatible operators and find its
eigenvalues and eigenstates;

c) What are the degeneracies of the system? Is there a relation with your answer in a)?
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SECTION 5

PROBLEM 9. EXPERIMENTAL/QUANTUM

A surprising and as yet not well understood feature of the strong interaction is that the nucleons
inside nuclei can be taken to be almost non-interacting particles moving in a collective potential,
the so-called single particle approximation. (The protons still experience the Coulomb interaction .
with other protons, but this is weak compared to the strong interaction.) In fact, an excellent first
approximation is to take the strongly interacting system of neutrons and protons to be separately
represented by gases of non-interacting spin-1/2 fermion quasi-particles in an overall spherical
square well potential of depth V, = 50MeV. The radius of this potential is the radius of the
nucleus, empirically r = roAm, where 1, =1.2fm and where one Fermi, 1fm, is 10" cm,
roughly the size of a bare nucleon. Here A is the nuclear mass number, or total number of
nucleons in the nucleus. The nucleon quasi particles can be taken to have the quantum numbers
and masses of bare nucleons. Crudely, large nuclei have equal numbers of neutrons and protons.
(Actually, large nuclei tend to have an excess of neutrons over protons, but ignore this.)

a) Give an estimate of the minimum amount of energy required to eject a nucleon from a
nucleus. In other words, what is the binding energy of the least tightly bound nucleon in
the nucleus? Ignore the Coulomb interaction.

b) What is the average kinetic energy of a nucleon (either a proton or a neutron) in a
nucleus?

¢) What is the average speed of a nucleon in the nucleus? Express your result as a fraction

of the speed of light.
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SECTION 5

PROBLEM 10. EXPERIMENTAL/QUANTUM

a) Riff Raff measures the brain waves of his sister, Magenta. He initially takes data as a
sampling rate of 200 Hz (200 samples per second) for periods of 100 s. What is the
highest spectral frequency that he can resolve?

b) What is the lowest spectral frequency that Riff Raff can resolve?

c) Magenta has a rare disease that leads to brain oscillations at 130 Hz. How will these
appear in Riff Raff's data?

d) Dr. Everet Scott starts an NMR experiment that requires that he sweep the strength of a
magnetic field and measure the change in magnetization of the sample as a function of
the field. Dr. Scott ponders whether, all other things being equal:

1) Is it best to sweep slowly, and use a low pass filter with a small bandwidth?
ii) Is it best to sweep fast, use a filter with a larger bandwidth and average
together many traces?

Which of these strategies are best (i) or (ii), or are they equal?

e) Just as Dr. Scott gets down to work, Columbia starts to dance in the laboratory. This

leads to 1/f noise, i.e., noise with a spectrum that increases with decreasing frequency, in

the measurement pfocess. Under this new condition, which of the above measurement

strategies is best? Why (be brief)?
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SECTION 5

PROBLEM 10. EXPERIMENTAL/QUANTUM
42 a) Riff Raff measures the brain waves of his sister, Magenta. He initially takes data as a
sampling rate of 200 Hz (200 samples per second) for periods of 100 s. What is the
highest spectral frequency that he can resolve?
4 b) What is the lowest spectral frequency that Riff Raff can resolve?
s ¢) Magenta has a rare disease that leads to brain oscillations at 130 Hz. How will these
appear in Riff Raff's data?
-2 @) Dr. Everet Scott starts an NMR experiment that requires that he sweep the strength of a
* magnetic field and measure the change in magnetization of the sample as a function of
the field. Dr. Scott ponders whether, all other things being equal:
1) Is it best to sweep slowly, and use a low pass filter with a small bandwidth?
ii) Is it best to sweep fast, use a filter with a larger bandwidth and average
together many traces? |
Which of these strategies are best (i) or (ii), or are they equal?
b T e) Just as Dr. Scott gets down to work, Columbia starts to dance in the laboratory. This
leads to 1/f noise, i.e., noise with a spectrum that increases with decreasing frequency, in
/_-t-he measurement prbcess. Under this new condition, which of the above measurement
—H 0 strategies is best? Why (be brief)?
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PROBLEM 11. MATH

Find the eigenvalues of the integral operator

Ku(x)= [ e*u(y) dy

If you cannot find a closed form for the eigenvalues, come as close as you can.
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Problem: Find the eigenvalues of the integral operator
(e o]
Ku(z) = / e~ 1= ¥ly(y) dy.
0

If you cannot find a closed form for the eigenvalues, come as close as you can.
Solution: The kernel is the Green’s function for the differential operator

dz?
with the boundary conditions u'(0) = u(0), /(1) = —u(1). Namely,

k(:lf, y) = e—lz—yl

satisfies
0%k(z, y)
Ox?
and the boundary conditions (in z for fixed y). Now, if Ku = Au, u must satisfy the boundary conditions
and

—k(z,y) = —28(z — y)

A —u)=—-2u

or
v —pZu=0
with
2
2
=1-—
K x
or
2
A= .
1— p2

‘We must have
u(z) = Aet® + Be™HT

and the boundary conditions are

u(A--B)=(A+B)
p (Ae* — Be™#) = — (Ae* + Be ")

which is consistent with nontrivial u only if
(n+ D)% = (1 — e ™.

This equation cannot be satisfied for any real u other than y = 0, for which u(z) is identically zero. But for
1 = —iv, we have the equation

otV — 1+
1—iv
or
tanv = Lid
12
2
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vin
The figure shows that there is a sequence of solutions vy, n = 1..., with v, ~ nm for all but the first few
values of n. vy = 0.7427. The eigenvalues are

2
A =
"1+ u2

and the lowest eigenvalue is A; ~ 0.3108.

3
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PROBLEM 12. E&M

A sphere of magnetic material has permanent magnetization M = M(r)f, where (r,6,¢) are

spherical coordinates. Determine B(r,8,¢) and H(r,6,¢).

FAN
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10 points

5. A sphere of magnetic material has the permanent magnetization M =M (r) 7, where (r,9,0)
are spherical coordinates. Determine B(r,8,¢) and H(r,6,¢).
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PROBLEM 13. MECHANICS/ E& M

The figure below shows a pendulum that consists of a mass m attached to a string of length £,
The mass carries charge g. Gravity points vertically down and a uniform magnetic field, B,
points vertically up. What is the minimum value of the angle 0 reached by the mass when it is

released from restat 0= 7y Here, (0 ,£) are spherical coordmates defined w1th the origin at
the pomt on the cellmg where the upper end of the strmg is attached '
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PROBLEM 14. MECHANICS/E&M

An electron is 1n01dent with impact parameter p and speed v, on a proton at rest. Calculate the
energy radiated durlng the collision assummg the ordering e*/p << mvi << mc?,

(Hint: for this ordering there is a simple approximation for the orbit.)

29



T. M. O’Neil
Phys. 203B

Your Name

FINAL EXAM
June 10, 1994

Each problem is worth 10 points.

1. An electron is incident with impact parameter p and speed v, on a proton at rest.

Calculate the energy radiated during the collision assuming the ordering

e’/p«m v <mc?. (Hint: for this ordering there is a simple approximation for the orbit.)
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PROBLEM 15. E& M
An electron resides in a large evacuated region of space that 1s permeated by the uniform

magnetlc field B Initially the electron velocity v, is perpendlcular to B,. Takmg into account

radiation, calculate the electron kinetic energy as a function of time. You may assume that

[vol <<c and that the energy radiated in one cyclotron period is small compared to the

instantaneous kinetic energy. Is there some small value of the kinetic energy Where you expect

your result to fail?

oo



?&Zagm sz(

An electron resides in a large evacuated region of space that is permeated by the uniform
magnetic field B,. Initially the electron velocity v, is perpendicular to B;. Taking into
account radiation, calculate the electron kinetic energy as a function of time. You may
assume that vo< ¢ and that the energy radiated in one cyclotron period is small
compared to the instantaneous kinetic energy. Is there some small value of the kinetic
energy where you expect your result to fail?
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PROBLEM 16. MECHANICS/E&M

A non-relativistic electron is ejected from the origin with velocity V=v (Z+3%), where
v,(eB/mc) << L. The magnetic field in a region of space is given by B=B,[#(1+2z/L)- #x/ L].

Determine the maximum value of z reached by the electron.



A

. The magnetic field in a region of space is given by B=B[£(1+z/L)-£x/L]. A

non-relativistic electron is ejected from the origin with velocity v=vy(Z +§), where
vo/(eB/mc)< L. Determine the maximum value of z reached by the electron.
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PROBLEM 17. QUANTUM MECHANICS

Protons (contained in Hydrogen atoms) are in a strong, constant magnetic field B% for enough

time to relax to the ground state. At t=0a rad10-ﬁequency electromagnetic wave is applied,
B(9)= B,f (@)cos(ank

where f(®) is avfrequency distribution péaked at a;:

-—(m-m.)zlzaz

f(w) T—

What is the maximum spin flip transition rate that can be achieved as @, is tuned?

RN
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PROBLEM 18. QUANTUM MECHANICS 4
A spin-less charged particle (charge e) in free space moves under the influence of a uniform
magnetic field B. Find and discuss the energy levels for this particle. Show explicitly how you

obtain your result. - o -

A\
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NUMBER SCORE
PART I .

PHYSICS DEPARTMENTAL EXAM — FALL 2002

PROBLEM 19. STATISTICAL MECHANICS

Consider a drunk performing a random walk on a square grid (of grid size ), starting from the

| origin. ‘

d) Suppose at every step, the drunk takes a step to one of the four neighboring grids with
equal probabi'lity. Derive the expression for the average position and root-mean-
square distance from the origin after N steps. [You may choose to assume that N is
large.]

e) Repeat (a) for random walk performed on a cubic lattice.

f) Now suppose fhe walker is not completely drunk: on a square grid, he either
continues to advance in the same direction with probability 0.4, or picks one of the
thrge remaining directions with equal probability (0.2 each). The first step was taken
with equal probability in all four directions. Compute the average position and root-
mean-square distance from the origin after this walker takes N steps.

[Hint: It will be useful to first show the correlation in the directions of successive steps , and

then usb it to compute récursively the correlation in the directions between two arbitrary

steps.]
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Solution for Problem 19. Statistical Mechanics

(a) Let @, describe the displacement vector associated with step n. The total displacement
after IV steps is

N
n=1

For a completely random walker, @, € {+aZ,+aj} with equal probability, and is
uncorrelated with d, for all m # n. Hence

N

(By) = ) (G)=0 2)
N N

(BY) = Y (@m-@n)=) (@)= Nd (3)

(b) The above result is independent of the spatial dimensionality.

(c) The total displacement is still given by Eq. (1). Since there is no asymmetry in the four
direction, the result (2) still holds.

There is however explicit correlation in the directions of successive steps taken by the
walker, and the result (3) is no longer valid. Given that step n is in direction a,, the
average direction of step n + 1 is (@,+1) = 0.2d,,. Similarly,

(Gny2) = 0.2 (@ns1) = (0.2)2d,,
and generally, (@,dn,¢) = (0.2)¢a2.

Now, the rms distance is given by

N
myn=1
= Na2 + 2(N - 1) X (6nan+l> + 2(N - 2) X (6nan+2> + ...
N-1
= Na®+2a) (N -£)(0.2)% (4)
=1
N-1 y
. ) _ .
Performing the sum for N > 1, with S(y) = ; =1 ”
N-1
d 1
and 09" =7=-8(7) = =5,
=1 de ( ) (1 - 7)2

we find .
lim (R%) = a® [N + 2NS(y = 0.2)] = 1.5Na>.
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PROBLEM 20. RELATIVITY/MECHANICS/ESTIMATE
Suppose that we have a uniform (homogeneous) and 1sotrop1c distribution of mass-energy that
fills all of space. (That is, at a given time ¢, the density of mass-energy is the same everywhere
and there are no preferred directions.) This distribution of mass and energy could be uniformly
contracting or expanding. Consider a test mass point of mass m that is on the surface of a
co-moving spherical surface with radius a(r) whose center is at an arbitrary point in space. By
co-moving, we mean a sphericél surface that rides aléng with the expansion/contraction. Take
th; test mass to be negligible compared to the total mass energy inside of radius a(z) for any
time we consider here. The physical density of mass-energy at any time ¢ and at any point in

space is p(#). Take the gravitational constant to be G =1/m?, where the Planck mass is

p1
my =1.22 x10*MeV, where we have taken A=c =1.

a) By considering the kinetic and gravitational potential energies of the test mass find an
equation for the time rate of change of a(r). Use Newtonian expressions for kinetic
energy and gravitational potential energy. (Call the time rate of change of the radius of
the sphere a=da/dt.) Express your result in terms of G, a(?), p(#), and a constant
k=-2E, Im, where E,_, is the tc;tal ‘mechanical energy which can bé taken to be
positive, negative or zéro. Describe the evolution of the mass-energy distribution, i.e., the
evolution of a(z) for the cases where & is positive, negative, and zero. The equation you
derived turns out to be general relativistically correct. The technique for deriving it
suggested_ here is correct so long as our imaginary comoving sphere is small compared to
the causal horizon size (roughly the speed of light times the age of the universe).

b) Suppose that p(f) comes almost entirely from electromagnetic radiation (photons) with a
thermal energy spectrum. That is take p(t) = AT", where the temperature characterizing
the Planck distribution of the photon energies is T'(#) and A is a constant. Since the
number density of photons scales like T°(#) and the average energy of a photon scales
like T(#), we can show that T'(¢) scales like a™'(r). If this is the case, how does a(f) scale

with time for the case where the total mechanical energy is zero?

FA)
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¢) Now suppose that the mass-energy is dominated by a constant component. That is
p()= p,, independent of time or position. HoW does a(r) depend on time in this case if
the total mechanical energy of our commoving sphere is zero (k=0)? |

d) In fact, presént astronomical observations indicate that your result from part c) is the best

fit to the time dependence of the expansion rate of the universe. If the present expansion

rate is measured to be H ,=a/a=100km-s™ -Mpc™ (where 1Mpc =~ 3x10* cm), what

is p,? (p, is the so-called vacuum energy density or dark energy density .)

v
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