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DEPARTMENT OF PHYSICS
DEPARTMENTAL EXAMINATION —FALL 2003

PARTI

Please take a few minutes to read through all problems before starting the exam. The
proctor of the exam will attempt to clarify example questions if you are uncertain about them.
Please attempt seven (7) of the (10) questions. The questions are grouped in five Sections. You -
must attempt at least one question from each of the five (5) Sections. E.g. Section 1: problem 1
or problem 2. Partial credit will be given for partial solutions for seven (7) questions only.
Please indicate with a “check” which of the (7) questions you wish to be graded below:

Section 1: ‘Problem 1 Problem 2
Section 2: Problem 3 Problem 4
Section 3: Problem 5 ~ Problem 6
Section 4: Problem 7 : Problem 8

Section 5: Problem 9 . Problem 10




Fundamental constants you may need
¢=23.0 x 10° m/sec
fi=11x10"34 J gec
k=14x10-%J/K
0=57x10"% W/m? K¢
G=6.7x10"1 m% /kg sec?

PART I - Undergraduate
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SECTION 1:
Problem 1.

A homogeneous ball of mass M and radius R is struck impulsively at its center, causing it to go from rest to

a horizontal speed of vy. Assuming a constant coefficient of friction H, find the distance traveled by the ball
before it begins to roll without slipping.
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SECTION 1:
Problem 2.

A cannon at (north) latitude 6 is pointed due east and fires a projectile with initial speed vy and elevation angle
a. Find the change in range of the projectile due to the earth’s rotation, to linear order in the rotation rate (2.
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SECTION 2:
Problem 3.

Consider a metallic wire of length L and radius a, which runs parallel to a conducting plage a distance of D
away; assume that L >> D >> q. Find an approxi

mate expression for the capacitance of this system.
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SECTION 2

PROBLEM 4,

A metallic “horseshoe-shaped” loop of width a is attached to a sliding wire, as shown in the figure. A uniform

magnetic field is perpendicular to the plane of the system. If the wire has mass M and resistance R, how far
will it travel if it is given an initial speed vg?
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SECTION 3:
PROBLEM §:

A particle with charge g and mass m is bound by a three-dimensional harmonic oscillator potential
Viz,y,2) = %k(zz:2 + 92 +2%)

a. What is the degeneracy of the energy eigenstate with E = Zh/k/m ?

b. Now, a (non-constant) electric field in the £ direction is applied to this system. How much of the above
degeneracy is lifted? _

c. Now assume that the electric field is given by E = £Egze~4*". Find the change in the energy of the ground
state to lowest non-vanishing order in Ej. .
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SECTION 3:
PROBLEM 6:

A pair of spin 1/2 particles is prepared in the entangled state

> = \,i,z (11> + 1>)

where the arrows refer to the 2 component of the particles’ spins.

a. The spin component of the first particle is measured along an axis i, making angles 6,, ¢, with the # axis.
What is the probability of obtaining +A4/2?

b. After the first measurement along i, yields spin up, the second particle’s spin component is measured along
iy with angles 6;, ¢y. What is the probability of obtaining +%4/27?



ID Number PART I‘ Score

PHYSICS DEPARTMENTAL EXAM - FALL 2003

SECTION 4:

Problem 7.

To heat a cup of water of volume 250cm?, a heater at T = 120°C is immersed therein. Assume that there is
no heat loss to the cup and that the heating element remains at 120°C. What is the change in the system’s
entropy as the water temperature increases from 20°C to T = 50°C 7 (note: the heat capacity of the water can
be taken to be temperature-independent and equal 4190J/K - kg).
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SECTION 4:

Problem 8.

A zipper has N links each of which can be in two possible states - closed with energy 0 and open with energy
€. The zipper can only open from the left, i.e. a link j can be open only if all links to its left with indices i,
1 <1< j are open.

a. Find the partition function of this system. -

b. Find the average number of open links
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SECTION §:

Problem 9.

Consider a laboratory experiment which aims to measure the acceleration of a cart down an inclined plane
(see figure). The cart has length £ and is detected by two photocells separated by distance s along the slope,
Assuming that one can neglect the acceleration during the periods of time that it takes the cart to pass by each
of the detectors (; and t;), one can easily see that an estimate of the acceleration is

(/1) — (¢/ta)?
2s

Assuming that the lengths are determined to be £ = 5.00 & .05 cm, s = 100.00 £ .2 cm, the times are t; = 0.054
sec and tg = 0.031 sec and finally that times can be measured with an absolute accuracy of 0.001 seconds, find
the percentage uncertainty in the acceleration measurement. Would pushing harder make the error larger or
smaller? :

Ae‘\'e&of A
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SECTION 5:

Problem _10:

Assume that the total amount of energy radiated by the sun is 4 x 10?8 J/sec.

a. The surface temperature of the sun is 5800°K. Find the radius of the sun.

b Assume that the earth is 1.5 x 10'! m from the sun and is in thermal equilibrium with it, i.e. re-radiates as
much thermal energy as it receives. If the radius of the earth is 7 x 108 m, find the surface temperature of the
earth. ‘ ’
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DEPARTMENT OF PHYSICS :
DEPARTMENTAL EXAMINATION -FALL 2003

PART IT

Please take a few minutes to read through all problems before starting the exam. The
proctor of the exam will attempt to clarify example questions if you are uncertain about them.
Please attempt seven (7) of the (10) questions. The questions are grouped in five Sections. You
must attempt at least one question from each of the five (5) Sections. E.g. Section 1: problem 1
or problem 2. Partial credit will be given for partial solutions for seven (7) questions only.

Please indicate with a “check’ which of the (7) questions you wish to be
graded below:

Section 1: Problem 11 Problem 12
Section 2: Problem 13 Problem 14
Section 3: | Problem 15 Problem 16
Section 4: Problem 17 Problem 18

Section 5: Problem 19 Problem 20
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Problem 11,
A point mass slides without friction inside a surface of revolution described by 2(r) = asinr/R. The mass is
subject to a uniform gravitational field —g2.

a. Construct the Lagrangian in terms of the coordinates r and ¢.
b. Find the horizontal circular orbits.

c. Which of these orbits is linearly stable under perturbatiohs applied transverse to the direction of motion?
What is the small oscillations frequency around the stable orbits?
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SECTION 1:
Problem 12,
Consider waves propagating on an infinite spring-mass system (see figure below) where the masses m are equal

but the spring constants alternate in strength. The equilibrium distance between the masses is a. Find the
dispersion relation and explain physically what happens in the limit k >> k'..

| /
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SECTION 2:
Problem 13.

3
A plasma that is characterized by the frequency dependent dielectric constant e(w) = 1 - s; occupies the
half-space z > 0. The half-space z < 0 is vacuum. An electromagnetic wave

E(F,t) = Re Eggelt=—it
ﬁ(r"',t) = Re Boﬂeikz-iwt

with w < w,, is incident on the plasma; here k = w/c and Eg = Bo. Determine the reflection coefficient and give
a physical interpretation of your answer,
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SECTION 2

PROBLEM 14.

A superconducting slab occupies the region z < 0. A long straight wire is parallel to the § axis and lies at at
z = 0 and z = h; assume that the wire carries current I in the +§ direction.

&. Determine the magnetic field in the region above the superconductor, taking into account the fact that the
superconductor excludes any magnetic field from its interior.

b. Determine the surface current on the superconductor.

¢. Determine the force per unit length on the wire, stating explicitly whether the wire is attracted to or repelled
from the surface. '
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SECTION 3:

PROBLEM1S:

Consider the anti-linear time reversal operator

A

T = Ke—iws,,/ﬁ

where K is complex conjugation K[y] = * and Sy is the § component of the spin operator (for arbitrary spin
s, not necessarily 1/2). :

a. Which of these systems is time-reveral invariant, i.e. has [H, ,ff’] = 07 Spinless charged particle in an electric
field, spin 1/2 particle in a central field with spin-orbit coupling, spinless charged particle in a constant magnetic
field? v

b. What is 72 equal to?

. ¢. Show that T[:p,.] is orthogonal to 4y, for a spin-1/2 particle in an energy eigenstate ,,. What does this imply
about the energy spectrum?
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SECTION 3:
PROBLEM 16:

Use the Born approximation to find an approximate expression for the differential and total cross sections of a
spinless particle of mass m scattering off of a screened Coulomb potential

V(ir) = —-—?—e"/"
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SECTION 4:

Problem 17,

Consider a system of N 3 1 impenetrable beads of mass m and diameter a on a semi-infinite frictionless wire.
Let the coordinates of the particles be z1>0,z3 > z1+a, .., zv > zy-1 +a. The system is in thermal
equilibrium at & temperature T, and the rightmost bead is subjected to a constant force F towards the origin.

(a) Write down the Hamilton of the system in terms of the momenta and positions of the particles. For
convenience, take the zero of the potential energy U to be that at the minimal position of the rightmost
bead, zy = (N — 1) . a. ‘ , ‘

(b) Find the partition function Z of this system in terms of N, 8 = 1/kT, and F. Note that since the beads
cannot pass through one another, they should be treated as distinguishable particles.
(Hint: It may be useful to use the ‘displacement’ coordinates U = Ziy — 7; to perform
some of the integrals.]
[caussian integral: ff: dy e~v’/20® = (2ma2)1/2 ]

(c) Calculate the average energy and specific heat of the system. Find the average position of the rightmost

bead (zx) as a function of temperature. For what temperatures can (zx) be much larger than the minimal
position (N — 1) - a?

(d) For a one-dimensional system, the “pressure” can be simply taken to be the force F applied to the rightmost
particle. Find the equation of state p(n, T), where n = N/ (zn) is the “density” of the system.
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SECTION 4:

Problem 18,

Consider an ultra-relativistic electron gas where the electron kinetic energies are typically much larger than the
electron rest mass energy me? and where interactions are negligible.

a. Find the Fermi energy in terms of the density V. /V where N is the number of electrons in volume V.
b. Find the energy of the ground state.

¢. Some white dwarf stars can be thought of as & sphere of radius R composed of ionized Hydrogen gas in which
the electrons can be treated as being ultra-relativistic. Using the virial theorem to relate the gravitational
potential energy of the protons to the electronic kinetic energy, find the value of N.
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SECTION 5:
Problem 19,
Evaluate the integral
-] 2a-1
I@) = 2 /0 dr 1”?35

for0O<KRea<1
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SECTION 5.:
Problem 20.
Solve for the function u(z):
tOdgu(@) 1
P /_ o Tzt " 178

where P denotes a principal value integral.

Score



Fall 2003 Departmental Exam Solutions

N.J. Miller
Friday, August 12, 2005

Problem #1

The requirement for rolling without slipping is wR = vy ¢m. We write down
the equations of motions for Zem, Yem, and 0., and solve. This problem is
essentially the same as one done in a previous year. Applying all forces and
torques, we get for y, x, and # motions:

—Mg+ N = Ma, =0
—ulN = Ma,

2
RuN = Ia = gMR?a
Solving for v,, we get

Vg = Vg — pgt

Solving for w, we get

_ Oy
w = K9

2R
Setting wR = v, at time T, we get

S
%Tzvo—ugT
2
-7=:2
Tuyg

To find the distance it rolls in this period, we must find the position of the
center of mass at this time
Lo
Tem = 75,“’.975 + vot
at time T, this is
12 U(Q)

T) =
z(T) 19 19



Problem #3

For this problem we want to find the difference in potential between the plane
and the wire. The potential for each is due to the potential of the charge on
the wire and the potential of the image wire. Using Gauss’s Law, for an infinite
cylinder with charge plastered on it, we get

E, 2mp1L = 4m )L

Therefore
S 2)
E = —pP1
P1
Which gives ther potential as
¢ = 2Xlog p1

For the image wire, we stick charge of the opposite sign on, for

¢ = —2Alog po

Note that p; and ps refer to distance we are from the specific wire. The
potential at the plane is just 0. The two terms just cancel each other. The
potential at the surface of the real wire is

Dwire = 2A1loga — 2X\1log D

where since D > a we can assume the surface of the real wire is a distance
D away (approximating a line charge for that part). Therefore the difference in
potential between the plane and the wire is
2Q

D

Since Q = C'A¢, we can solve for C' and we get

-1
C= L <10g D)
2 a

If we instead tried to calculate the capacitance of the two wires (real and
image), we would have gotten

-1
C= L <log D)
4 a

The way we can see that the capacitance of the plane-wire system is doubled
is that it has half the total energy (upper plane and lower plane have the same
energy in wire-wire system). Since the charge on the wire is constant when
switching to the plane-wire system (and difference in potential is halved), we
see that the capacitance must be doubled.



Problem #4

When the wire moves, there will be an EMF produced, which creates a current.
The magnetic field provides a force on the current slowing it down. The EMF
is EMF = —%%, where ® = BA, where B is the magnitude of the magentic
field inside the loop and A is the area of the loop. A = K + z(t)a, whee K is
the area of the horseshoe part, x(t) is the distance from the start for the wire.

Then 4% = B% = Bav(t). We therefore get

dt
B
pvp - -2 g
c
and the force on the wire is
IaB B2a?
p_faB _ B v(t):Ma

c 2 R
We can solve this equation for x(t) as a function of time, with initial condi-
tions z(0) = 0 and v(0) = vg, giving

Rc? B2a? Rc?
2t = ~Frgzvo e |~z | + gz

The distance the loop travels is z:(co0) = 7;;6;2 Vo

Problem #5
Part a)

2
pz 1 2
= 4+ -k
2m+2 *

Pz
2m

Py 1,
o + Qky +

The solution to this is just the product of 3 one-dimensional harmonic oscil-
lators, and the energy is the just the sum of the energies of these 3 oscillators.
We therefore get E = hw(n, +ny +n. + 3). In order to get E = Lhw, we must
have ng, + n, + n, = 2. There are 6 possibilities that allow this.We therefore
have a degeneracy of 6 for this energy

1
H= +§kx2+

Part b)

The change in potential energy is ¢®, where —V® = E. Since E only points in
the 2 directions, ® = ®(x). The change in energy of the state is

< Ngpnyn; |qP|ngnyn, >= /d3ﬂ\11|2q<13(:r)

Since this integral depends only on x, the states n,nyn, of 020 and 002 will
still have the same energy. Also 110 and 101 also will have the same energy.
We therefore split the single energy (6 different states) state into 4 energies with
the degeneracies as described in the previous sentence.



Part c)

The ground state of the harmonic oscillator is NV exp(—%xQ). If you don’t
remember this, you can derive it by knowing that a = %(Aw + %), where

A= /%, and a0 >= 0. Solving for the normalization (just need to integrate
a gaussian which we can do), we get the ground state of the three-dimensional
oscillator as

(%)3/4 exp (—Tg—;(f +y? + 22))

If E = &Eoxexp(—Az?), then ® = 28 exp(—Az?), so the change in energy
to the ground state is

mw\ 3/2 mw, o 9 2\ Eo 2
/dxdydz (E) exp (—?(:ﬁ +y +z )) ﬂexp(—Ax )

The y and z integrals can be done and just get rid of their normalization
factor. We then get the change in energy as

% dx (%)1/2 €Xp (7 (% + A) 51”2) - QETZ (%)1/2 <”";{"7T—&—A> "
Problem #6

Part a)

It doesn’t matter what ¢, is for this part of the problem. In spherical coordi-
nates, ¢, measures the rotation about the z-axis (making a circle for 0 < ¢ < 27
has the center of the circle as the z-axis for all ¢). Therefore all we need to do is
calculate the probability of being spin up when rotating about the y-axis by an
angle 0,. This requires the roation matrices. We calculate what each spin-1/2
particle rotates to and then multiple the 2 particles together. For 1-particle the
new state will be

Therefore | 7> goes to cos % | 1> —sin% | |> and | |> goes to sin % | 1>
+ cos % | |>. Therefore our new entangled state is now



1 6 o b, . b
= \7@[ (cos 5| 1>1 —sin ?| l>1) <cos 5| I>9 —sin 5\ L>2)

. ea oa . aa ea

+ (sm 5| 1>o +cos ?\ l>2) (s1n2| 1>5 +cos ?| l>2>]
1

=—=(T>1 1>+ I>1 ] 1>1)

V2

If we find the amplitude the first particle is spin up we get

1
ﬁl >

Therefore the probability of spin up for the first particle is %

Part b)

As with the last case, it might be easier to create a similar problem with the
same answer. In this case 0, = 0,, ¢/, =0, 0; = 0, and ¢}, = ¢, — #,. The new
primed rotations have the same orientation with each other as with the original
problem. The reason we are doing this is because we have already found the
exact state the second particle is in after the measurement of spin up. The state
is | T>1 | T>2. In general if we make 6 and ¢, then S, along that axis is

h ( cos sin f exp (—i @) )

2 \ sinfexp (i ¢) —cosd
with
0 .0 .
| 1>.= cOS 5 exXp (z ¢> | T>u — S 5 exp <Z ;b) | 1>
| |>.= smgexp (—z ¢> | T>u —l—cosgexp (—Z ¢) | 1>u
Therefore

a

My, = cos 22 1), -+ sin 2211,
0, P — ¢a> - 811102bexp< ¢ — ¢a>l>%)

cos(cose (
—|—51n02a<51nexp< P — ¢a>|T>ub+00592exp( & 2¢a)|l>ub>

=

2 2
(bb )—c059251n92bexp< ¢b2¢a>>|l>ub

2
5 (b (ba)—i—smesmebexp( ¢b—¢a>)”>%

Oa
= | COS — COS —_— GXp

+ (sm — COS — exp



Plugging in, multipying the states of the two particles, simplifying, taking
the amplitude of spin up for particle 2, and finding the probability it is in this
state requires HUGE amounts of algebra (which makes it seem as if there is an
easier way with less simplifcation or I am not seeing simple simplifications)

1
P= 1 (24 cos (0, — 0p) + cos (0, + Op) + 2 cos (Pp — Gq) sin b, sin )

When 6, = 0, and ¢, = ¢, we get 1 which is what we expect and if 6, =

0p = 5 and ¢, — ¢o = ™ we get 0 which is what we expect (assuming what I

expect is correct)

Problem #7

The heat capacity of water is defined as C =T (g—;). We can solve for AS and
get AS = Cln (%), where T is in kelvin. The density of water (at 20°C) is

1gcem™3, so the mass of the water is 250 g = 0.25kg. We therefore get the heat
capacity as (they give specific heat capacity) 1047.5%. The change in entropy
is therefore

B T\ J (323 J
AS =Chn <T> = 10475 In (293) = 102,11

Problem #8

Part a)

There are N + 1 possible states. There are where 0, ..., N links are open. There
is only one possibility for each number of open links, since every link to the left
of a link must be open for it to be open. We therefore have the states specified
as where the k left links are open. 0 < k < N. The energy for each state is ke.
Therefore the partition function is

N N
Z = exp(—fne) = Y exp(—fe)"
n=0

n=0

A simple thing to know is that

N N+1
1—=x
Therefore the partition function can be simplified to

1 —exp(=pfe(N +1))
7= exp(—p)




Part b)

The average number of open links is

1 9
anzon exp(—/fne) = ~3039 InZ
0 (1-ew(-pN 1)
T 9(Be) 1 ( 1 — exp(—fe) >
0
— ) [In (1 —exp(—Pe(N +1))) —In(1 — exp(—P¢))]

exp(=Be) (N +1)exp(—Be(N +1))

1 — exp(—p0e) 1 —exp(—Be(N + 1))
1 N +1

exp(Fe) —1 | 1— exp(Be(N + 1))

The answer goes to 0 as € — oo and % as € — 0 which is what we expect.

Problem #9

This problem is an exercise is error propagation. In general

Sa+y)=da—y) = [0 + 6w)?]

55;;?;) _ ’ (;’C) = l(ff * (55)2]
6(32") —n (&C)

We can use these relations for errors to find the uncertainty in the accelera-
tion. Our calculated points and there errors are

1/2

[ =5.00+£0.05cm

s =100+ 0.2cm
t; = 0.054 +0.001s
to = 0.031 £0.001s

The equation we must propagate the errors through is



I switched the location of t; and ¢; in the equation since vJ% = v? + 2aAx
and I want vy to be at photocell 2 with Az positive down the slope, leading to
a positive acceleration. Using the measured values (without errors) we get an
acceleration of

a=87.2cms 2
The error in the denominator is

A(2s) = 0.4cm

The first term in the numerator is (after combining two error propagations
(dividing and raising to a power))

() =) [ ()]
() |(7) - ()

=1757cm?s™2

1/2

1/2

2
So we get (é) = 26014 + 1757cm?s~2. Doing the same thing for the

2
second term in the numerator, we get (é) = 8573 & 579cm?s~2. Putting

2 2
these two together we get (%) - (é) = 17441 + 1849 cm?s~2. Dividing

through by 2s gives

a=872+93cms 2

or a fractional uncertainty of 0.1 (assuming I still remember how to use my
super HP 49G). I don’t know what it means by pushing harder.

Problem #10

For a more complete discussion of essentially this problem go to http://en.wikipedia.org/wiki/Black-
body_radiation

Part a)

We approximate the sun as a black-body. Then this is an application of the
Stefan-Boltzmann Law.

Prog = oT* x 47 R?

The power radiated per unit area is proportional to T, where the propor-
tionality is o = 5.7 x 1078 W / m? K*. If you didn’t know the Stefan-Boltzmann



law, look at the fundamental constants that are given on the page before the

first problem. It is the only constant that relates power to temperature and

area (use dimensional analysis to get relation). Plugging in the values we get
4x 100 W =57x10"3W/m?K* x (5780K)* x 47 R?

or

R, ~ 7.09 x 103m

which is close to the measured value of
R, ~ 6.96 x 10°m

Part b)

We must find the fraction of total energy absorbed by the earth as a function
of time. At a distance of d, the power density is ﬁ. The earth effectively
covers its cross sectional area mwR%. Therefore the total power hitting the earth

2
is P%. Using the Stefan-Boltzmann Law we have
p TR?
4 d?
Plugging in numbers, we get

= oTp x 47 R?

Tp =281K
Near the measured value of
Ty = 287K
Problem #11
Part a)
For cylindrical coordinates, T = im(i* + r2¢2 + 2). For z(r) defined as
in the problem, we get 2 = 2% so T = sm(i? + r2¢? + 70‘255282%2) =

%mr'z (1 + %) + %mr2¢2. Since we just have a gravitational force, the

potential energy is V' = mgz = =% sinr. Hence the Lagrangian is

sinr

I— %mr'Q (1 N a? coszr> 1 o Mg

22
R )T R



Part b)

The horizontal circular orbits are when 7 = 0. First we must find the equations
of motion. For ¢, we get

d 9
—(mr =0

= (mr?)
which is just conservation of angular momentum. For r, we get

d 2 . 1 202
7 (m (1 + % cos? r) r) = mr¢?® — imv;2 (;2 cosrsinr) — mlgoz cosr

Setting r = 0, we get

mga
cosr =0

mr¢52 —

_ [9a
¢ = TRCOST

We have horizontal circular orbits when ¢ is real. This is when 0 < r < 5

or

Part c)

We originally satisfy gf)o = /T%‘{ cosrp, and give a bump transverse to motion

(i.e. essentially in 7 direction). We take r — 1o + d7(t), ¢ — ¢o(t) + d¢(t), and
look at the resulting equation of motion to first order in dr. Expanding out the
derivative in the EOM for r, we get

CoSsT

(14 a? 5 (207 ) (&2 1 5 (22 ) m
mf — cos“r | —m7r“ | —5 cosrsinr | = mr¢*——msr“ | —5 cosrsinr | —
R2 R? 2 R?
The second equation says

mr2q5 =K
where K is a constant. Plugging in to the second equation, we get
m(ro + 0r)(do + 0¢) = mrddo + mridsp + 2mrodrody = K
to first order in 6r and d¢. Since mr%é)o = K by definition of K, we get
6 = _9%05,
To

Expanding the EOM to r to first order, we get

10



2
mor (1 - % cos” 7’0) = mrodd +mdrdd + 2mrododd — "o (cos o — sinro 6r)
—mIZ cosrg Or —4m 3% cos Ty Or + < sinrg or
roR roRR
3
— (- mga cosry + mga sin 7“()) or
’I‘QR

The coefficient in front of §r must be negative in order to have stable oscil-
lations. This happens when

3 .
——cosrg +sinrg <0
To

or

3
tanrg < —
To

Problem #13

This is just reflection at a dielectric boundary. In the plasma, B= %;; xE. Using
this we get for our 2 boundary conditions (F) and H|; must be continuous across
the boundary)

Ey exp(—iwt) + REy exp(—iwt) = T Ey exp(—iwt)

k
Ej exp(—iwt) — REp exp(—iwt) = C—QTEO exp(—iwt)
w

These simplify to

1+R=T
1-R=nT

where n = /€(w) is the index of refraction of the plasma. We can solve this
to get

1—n
1+n

R=

The reflection probability is |R|2. Since w < w, that means that € < 0 and
n is imaginary. Therefore R = 1. All of the energy is reflected at the boundary.
Since our index of refraction is imaginary, the wave in exponentially damped in
the plasma and no energy can be transmitted.
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Problem #14
Part a)

This problem requires the use of images. The superconductor resists any and
all currents, so the magnetic field inside the superconductor must be zero. Since
B,, must be continuous, it means that B, = 0 just above the superconductor.
We therefore need to find an image below the superconductor which gives a total
magnetic field satisfying the boundary condition. We can get this by putting
a image current I in the —g direction at * = 0 and z = —h. Therefore the
magnetic field in the region above the superconductor is

- 2] . 2I -
B=—0; +—0,
cry cry
where r; anfi T2 are the distances from the current and image current re-
spectively and 6; and 65 both point in the —Z direction when we are at z = 0

and x =0

Part b)

The free current can be gotten from 4%[? F=1n B |.=0. Before we can solve

X
for the free current we must solve for B, (z = 0). Both the fields due to the
current and the image current point in the —Z direction and have the same

magnitude. Therefore B, = —g cosf, where r, = vx2+ h? (the distance
“1h

from the currents) and § = 5 —tan™" 2

axis), so we get

(the angle each field makes with the x

41 h
Bz|z:0 = —; CcoSs <72T —tan! Jj>
_
er

The last line comes from expanding out the cosine and simplifying. We
therefore get

I
»&‘Q
—~
ISH
X
>
S~—
/T\
B
Q‘N
i~
~__

Part c)

The force per unit length on the wire is just f -y XCE , where B is the field due

to the image current. The field due to the image current at the real current is

12



- I
B=—-——3%
chx

So the force per unit length is

f_f)(é_ IQAX

¢ ep? e
12

T

Problem #15
Part a)

Particles in electromagnetic fields are time reversal invariant. E is invariant
under time-reversal, while both ¢ and B change sign. Therefore the motion in
these fields is time-reversal invariant. Angular momentum and spin both change
sign under time reversal so spin-orbit coupling does not change sign under time-
reversal. Kinetic energy is time reversal invariant since it involves p?, which is
invariant. Therefore all three cases are time-reversal invariant. (7)

Part b)

By definition, 72 = K exp (— m:y) K exp (— m;?y ) Applying this to a state 1),
we get

Tzw = Kexp <z7r7;5'y> Kexp (“Tsy) P

. - S*
= Kexp <—m:y> exp (thy> P>

inS* TS,
()l 5):

Since S, = 3-(S4 — S_), where S, and S_ are the raising and lowering
operators (and are real since their normalization factors are real), we have that
S, = —Sy. Therefore we get

TQw = exp (—i 27 S;) P

Hopefully this is right
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Part c)

For a spin-1/2 particle,

hi(0 —i
Sy_Q(i o)

In order to calculate Tz, then all we need is to calculate exp (—i 27 S—;) It

is

0
1 0 0 (_1)n7.r2n 0 —1 > (_1)nﬂ.2n+1
0 1)2 ol +(1 0 >Z @n+1)!

n=0

Therefore for a spin-1/2 particle 72 = —1. Therefore, T[t),] is orthogonal
to 1¢,,. You can prove this by knowing that

(Ty, To) = (6,7)

SO

(T, 9) = (T, T*) = (T, —¢) = —(T,¥)
so the inner product is zero and hence they are orthogonal. This implies
that the energy spectrum is at least doubly degenerate.

Problem #16

The first Born Approximation says f(k', k) ~ —52 V(q), where V(q) is the

)~ —
Fourier transform of the potential and ¢ = K — k.
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V(g) = /dSFe’i’j'FV(F) = 47r7r sin(gr)V (r)

q
0
4 7 4 7 _
=7 rsin(qr)ge_T/“ = ——WQ/sin(qr) e7r/a
q r q
0 0
Q1 1
— _Li iqr _ _—iqr —r/a -4
q 2i/(e e ﬂ-Qq2+a%
0
Therefore
2m@Q 1
/ ~
f(K' k) ~ TR 2+ L

a

The differential cross section is

_ 4m2Q? 1
M @)
_ 4m2Q>? 1

o (2k2(1 — cos @) + a%)Q

do , 2

Since ¢2 = (K — k)2 = k2 + k2 + 2k - k = 2k2 4 2k? cos 6, since k' = k. The
magnitude of the wave vectors are the same. The total cross section is:

do
212 7
= M/d@sin& L 5
h J (2k2(1 — cos ) + 35)

If we change variables to x = cos§ we get

1

8tm?2Q? 1
7= "0 /da; . 2
) (2k2(1—2) + 35)

a?

If we now change variables to y = 2k?(1 — z), we get

2k>
STm?Q? 1 /d 1
O="31 o512 Yy—"72
wwE )

_8mm*Q* 1 1 1
Rt 2k \2k2+ 5 4

a
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Problem #19

This integral actually proves Euler’s Reflection Formula

™

Fz)Iria-z =

sinmz

It comes from the fact that the integral is a representation of B(y,1 — y),
where B(x,y) is the Beta function, which is usually calculated as

I'(@)I'(y)
L(z+y)

To actually do the integral is first substitue ¢t = 2. The the integral is now

I(a)= 7ta_1 dt

0

B(‘Tvy) =

Lets look at a different integral.

a—1
/Z dz
1—=2

c

We take the branch cut along the negative real axis direction. Using the Profes-
sor Pac-Man contour with the mouth pointing in the negative real axis direction
(because of the branch cut), moving along the outer circle in the counterclock-
wise direction and radius of circles R and ¢, we get

Za—l ' a1 ]
1 dz = 2mi x (1) = 2mi

—z
c
Therefore, we have
) r (R exp(if))>~1! j(t exp(im))*~1 /ﬂ(e exp(if)) / (t exp(— -1
21 = | ————=——df ——dt do+ dt
m / 1 — R exp(if) + 1+1¢ + lfeexp 1+t

The first and third integrals go to zero when we take R — oo and € — 0.
Simplifying the second and fourth integrals, we get

271 = I («) (exp (ima) — exp (—ima)) = I («) 2isinma
Therefore

16



Problem #20

The thing to know for this problem is that if P (z) and @ (z) and polynomials
of order n and m with m > n + 2 then

PV_Z g g; de = 27iy " Res (g zj) +mi Y Res (g tj)

where z; are the poles in the upper half plane and ¢; are the poles on the

real axis. Since our function we are integrating is of the form ——= it means
that u (x) is of the form % where the two functions are polynomials and B’s

order is at least one greater than A’s order. We can rule out B of order 1 and
A of order zero, because that integral is zero and we want the poles of u(z) to
be imaginary. If they were real then for a certain ¢, the pole of u(x) is ¢ and
we don’t have a simple pole, which changes the integral. We need something
that works for all t. The next to try would be B(z) = 2% 4+ a? and A(x) =
Constant multipliers can be ignored (added in if needed). We use +a? in B
because we need imaginary poles. This integral is

o0

1 1 1 1 i 27
PV [ — = dr=-—
/7rx—tx2—|—a2 v 7r<t2+a2+(ia—t)(2ia)>
___t
 a(t?+a?)

We have a t in the numerator which we don’t want. The next thing to try
would be A(x) = z + b, while keeping B(x) = 2% + a?. This integral is

PV / r+0b &z+b :1< (+b)+ 27ri(ia—|—b)>

mx—tz?+a? 7\ 2+ a2 (ta —t) (2ia)

B a? — bt
 a(t? +a?)

We can get a solution of 7 t2 if b= 0 and a = 1. Therefore u(z) = %5
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