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Please take a few minutes to read through all problems before starting the
exam. The proctor of the exam will attempt to clarify example questions if you are
uncertain about them. Please attempt seven (7) of the (9) questions. The questions
are grouped in five Sections. You must attempt at least one question from each of
the five (5) Sections. E.g. Section 1: problem 1 or problem 2. Partial credit will be
given for partial solutions for seven (7) questions only. Please indicate with a

“check’’ which of the (7) questions you wish to be graded below:

‘ Section 1:
Secction 2:
Section 3:
Section 4:

Section 5:

Problem 1

Problein 3

"' Problem 4

Problem 5

Problem 7

Problem 9.

Problem 2

Problem 6

Problem 8
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SECTION 1.

Problem 1.

The internal energy and equation of state of one mole of a van der Waals gas are given by

f a a
U=5RT—V and p+? (V—b)=RT

a) What are the slope and curvature of the isotherm at the critical point? Determine
the volume and temperature at the critical point from a and b.

b) A van der Waals gas is adiabatically expanded. Compute the inversion
temperature below which the expansion leads to cooling, from a and b. (Hints:
Which thermodynamic potential is constant, so that its total differential, expressed
as a function of T and V is 0? In the last step, make the approximation b <<
V.) ‘
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SECTION 1.

Problem 2.

An ideal gas is heated in such a way that the pressure is proportional to the volume.
What is the effective specific heat for this process?
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SECTION 2.
Problem 3.

In 1995, M. Mayor and D. Queloz published precise measurements of the radial velocity
of 51 Peg, a star that is similar to the Sun. They found near-sinusoidal variations of the
radial velocity, which they interpreted as the reflex motion of the star due to a planetary
companion. The period of the variations is 4.23 days, the amplitude 59 m/s.

a) What is the orbital radius of the planet?

b) Under the assumption that the mass of 51 Peg is one solar mass, derive a lower
limit for the mass of the planet. (Note that we do not know the inclination of the
orbit.)

c) If our mass estimate for 51 Peg is off by 20% (i.e. M =(1+0.2)M,,, ),
how does this affect the result in b)?

d) Under the assumption that binary star orbits are oriented randomly in space, what
is the probability that the companion of 51 Peg is not a planet but a star
(m 2 0.08M...)? (The orbit would have to be nearly face-on.)

e) What temperature do we expect for the planet?

M =210"g, M, =2-10"kg, 1AU=1.5-10°km, vy=6.67-10" m%kg™"'s™

st Jup
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SECTION 2.

Problem 4.

The following three electronic circuits

¢ . —F
U’
U’
U=U0::oswt T C o U=U,cosax R
® —e

UI
U=U,cosan i L
L 4 -@

are connected to an AC voltage U =U, cosax.
a) Compute the amplitude of the output voltage U, =|U '|for circuit A, and give the
1
critical frequency @, for which U, =—=U,
q y c [ ﬁ o

b) Compute U’ for circuit B, and give @, for which U; = —J?U"

¢) Compute U’ for circuit C, and give @, for which U; is minimal.

d) Assign one of the terms “high pass filter”, “low pass filter”, “band pass filter”, and, “
band rejection filter” to each of the circuits A, B, and C, and sketch a circuit to which
the remaining term applies.
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SECTION 3

Problem 5.

A train has length 120 ft. in its rest frame, and it is traveling at 4¢/5 with respect to
the platform. The conductor walks back and forth in the train taking tickets at 4c/5 with
respect to the train. How long does it take him to get from the rear to the front, and how
long does it take him to get from the front to the rear? (Recall ¢ =1 ft/nsec.)

(a) according to observers on the train
(b) according to the conductor’s own clock

(c) according to observers on the platform



dn (a) According to observers on the train, the train has length 120 ft and the conductor is
i moving with relative velocity either +4/5c or —4/5c, so

At=-I—l 120 ft

= = 150 nse
v $ ft/nsec neee

for rear-to-front and for front-to-rear.
(b) The proper time of the conductor is related to At and Az in the train frame by

(AT)? = (At)? — (Az)? = (150) — (120)% = (90)?

ATt = 90 nsec

in both directions. Equivalently,

At 16 3
Ar=s =2 = _2=2. =
T 7 (150)4/1 5% =3 (150) = 90 nsec

(c) Define events A: Conductor at back of train; B: Conductor reaches front of train; and
. C: Conductor returns to back of train.

In train frame, Atap = 150 and Az4p = 120, while Atpc = 150 and Azpc = —120.

Boost to platform frame with v = 4/5.

4
Aty g = v(Atap —vAzaB) = 2(150 -5 120) = 90 nsec

4
Atlse = ¥(Atpc — vATaC) = g(lso — £ .(~120)) = 410 nsec
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SECTION 3
Problem 6.

Consider two objects of equal mass M in a circular Keplerian orbit (due to their mutual

attraction). Assume their separation is R. '

a) Where should an infinitesimally small mass particle be placed such that it will also
rotate about the overall center-of-mass at the same frequency as that of the original

objects. Look for a solution where the three masses are not co-linear.

b) Now imagine making the two large masses different, say M, and M, Show that the
same configuration as found in part a) will still satisfy the equation of motion, albeit

with the rotation around the (now altered) center-of-mass position.
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SECTION 4
Problem 7.
A beam of particles of energy E impinges on a barrier modeled by repulsive one-

dimensional & function V(x) =V, 8(x).

a) Find the reflection and transmission coefficients for a beam arriving from

X = —00,

b) Imagine placing a second, identical barrier at x = L. such that ,’2;:EL = %

Recompute the transmission coefficient. Is it larger or smaller than that for the

single barrier problem, if V, is small?
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SECTION 4

Problem 8.

A three-dimensional quazltum system has potential V(r) = r4. Use the
trial wavefunction 1) = e™®" and get a variational estimate for the ground
state energy.
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Section 5
Problem 9

Imagine that a charged particle of charge Q is placed in a gas of electrons at temperature

T, with initial density N,.

a) What is the equilibrium electron density in terms of the electrostatic potential
& (r).
b) Drive an equation for the potential ® (r) (due both to the added charge plus the

re-distribution of the electrons).

c) Find @ (r), in the high temperature limit.
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PARTII

Please take a few minutes to read through all problems before starting the
exam. The proctor of the exam will attempt to clarify example questions if you are
uncertain about them. Please attempt seven (7) of the (9) questions. The questions
are grouped in five Sections. You must attempt at least one question from each of
the five (5) Sections. E.g. Section 1: problem 1 or problem 2. Partial credit will be
given for partial solutions for seven (7) questions only. Please indicate with a
“check” which of the (7) questions you wish to be graded below: |

Section 1: Problem 11 ' Problem 12
Section 2: Problem 13 Problem 14
Section 3: | Problem 15 | Problem 16 _
Section 4: Problem 17

Section 5 Problem 18 Problem 19
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SECTION1

Problem 11.

A Z, (Ising) gauge theory on the square lattice has the Hamiltonian

=-J E %5595k
(ijkl)
where the sum is over all plaguettes (i.e. squares). The sites i, j, k, and [ are vertices, and $j, jk,
k!, and li links along the plaquette ijkl. On each link, the “gauge field” o may take values 1.

Solve for the thermodynamics of this model in the mean field approximation. Use the trial
density matrix ;
e({”.','}) = H P(”.'j)
(i3
P(o) = l1+2)6,,+3(1-2)5,_,»
where the product is over all links of the lattice.

/

(a) What is the variational free energy per site, f‘(z;T)? :
(b) What is the mean field equation which determines z(T)?

(c) Is the mean field transition first or second order? If ﬁrstv order, derive an equation for the
discontinuity in z at Tc. If second order, derive an equation for the discontinuity in ¢, the specific

heat per site.



Solution

The energy is E = Tr(¢H). The variational density matrix factorizes into a product, hence
(d'-j) = gz for each link, and E = —NJz*. Note that the number of squares is the same as the

number of sites, N.

The entropy is given by S = —kg Tr(gln ), hence

S=_2Nk [I;zln(l-;z)+1;zln(1;z)] ,

since each link contributes to the entropy, and there are 2N links. (In general, a lattice of coordina-

tion number z has %z links per site, which is made clear by the observation that each link connects

two sites. For the square lattice, z = 4.)

(a) The variational free energy per site, f = (E — TS)/N, is

f(z,T) = —Jz* + ksT [m (1 '4’2) +zln (1 + ’)] .

l-=z

(b) The mean field equation which determines z(T) is 8f/0z = 0, whith gives

a—f=—4Jz3+kBT1n(1+z>=0.
Oz 1—-2

(c) The free energy in the vicinity of z = 0is f(z,T) = —ksTIn4 + ks Tz? + O(z*). It always has
a positive curvature. However, f(z = 1,T) = —J, so for T < J/In4, f(z = 1,T) < f(z =0,T).
This tells us that there is a phase transition, and that it must be a first order one. To determine T,
and z. = z(T_), set f(z,T) = f(0,T), which, in addition to 8f/8z = 0, gives us two equations in

the two unknowns T and z.. Eliminating T from the equations gives us a transcendental equation

-3n(1-z2)==z.n (1 +z°) .

for z.:

1-1z,

This equation has a unique nontrivial (z. # 0) solution, numerically found to be z. ~ 0.990611.
Once z. is found, we may invoke 8f/8z = 0 to find T ~~ 0.725899 J /ks.

(",




SECTION 1

Problem 12.

Consider as a model for a white dwarf star a degenerate gas of electrons in the limit
where the Fermi momentum is much bigger than M, c.

a) Find the ground state energy in terms of the electron density and the total particle
number N (keep the leading two terms) '

b) Find the pressure.

c) Assume that the outward force exerted by the pressure of the electron gas is
" balanced by gravitational self-attraction of the protons (of which there are also N).
Derive an estimate, in terms of fundamental physical constants, for the largest
possible mass for which this balance is possible.
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SECTION 2

Problem 13.

A particle of mass M is confined to a cylinder of height L, inner radius a
and outer radius b, with boundary conditions that 1 vanishes on the bound-
ary. A magnetic field with total flux ®p passes through the central core of
the cylinder. The magnetic field vanishes in the region where the particle is
present. Find the allowed wavefunctions for the system. You can leave the
energy quantization conditions as a relation on Bessel functions. Find the
condition on the total flux ®p so that the energies are the same as those for
the system with no magnetic field.
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SECTION 2
Problem 14.
Consider the Hamiltonian
H=AS+B(S!-5})
for a spin 3/2 particle.

a) Find the energy eigenstates of the éystem

b) Assume that at t = 0, a perturbation of the form CS, is turned on. If the system at
t=0 is in the ground state with the highest value of (S, ), find the probability that
it will still be in this state at t=T. Assume C <<1, and assume for simplicity that
B=A (in this part only).
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SECTION 3
Problem 15

The attached X-ray spectra of Tungsten was recorded with a Bragg apparatus by varying
the angle 9. :

counter

X-ray
Tube ) v

) \
|| crystal

For one of the spectra, the crystal was LiF (lattice constant d= 2.01 A), for the other
spectrum NaCl. Both spectra were recorded in first order.

a) Determine the transition wavelength and transition energy of the line marked with
an arrow, and identify the corresponding upper and lower levels in the attached
table. '

b) Determine the Lattice constant of NaCl. Average over 7 lines to reduce the

statistical error.

(three pages attached)
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Attachment Preb. 15

thwcaslzew | =Y

Aus: Hanébuch der Physik, Bd XXX (227)

LI - 12098 ev
Loy -11540 "
Lyyq ~10202 "
My - 2816 "
Mi1q ~-2276 "
Miy -1867 "
MV - 1804 o
N - 589 "
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SECTION 3
Problem 16:

3 are suspended in a sugar

Small Latex spheres with 0.6 pm diameter and p = 1200kgm™
solution with p =1 190kgm™. After the suspension settles down, samples are taken at
heights of 2, 4, 6, 8 mm above the bottom. The samples contain 1.16 x 10°, 13500, 95,
and 2 spheres, respectively. ‘Use these numbers to determine Boltzmann’s constant, the
‘mass of an average air molecule, and Avogadro’s constant! (The scale height of air is

8km.)
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SECTION 4.

Problem 17.

Prove the addition formula

Ja(z+y) = i Jm(x)-]n—m(y)'

m=-=—00

Hint: The integral representation of the Bessel function is

eersre Gt
Jn(x) = fe (t 1/t)/22u_+1_

where the integral is around a closed. contour enclosing the origin.
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SECTION 5

Problem 18.

A particle of mass m and charge e moves in the zy plane in a potential
V(r), and a uniform magnetic field B in the z direction, with vector poten-
tial A = B X r/2. Find the Hamiltonian in polar coordinates, and find two
constants of the motion.
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SECTION S
Problem 19

Consider a gas of microscopic dielectric spheres of radius and a dielectric constant €. A
linearly polarized electromagnetic wave of frequency ® and o a/c<<1 is incident on the
gas. Assume the particulate density to be N,. Because of the scattering of light by these
spheres, the coherent energy in the wave will decay exponentially over some length scale.
Calculate this scattering extinction length.
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