
PHYSICS DEPARTMENT EXAM
FALL 2005. SOLUTIONS
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#1 : UNDERGRADUATECLASSICALMECHANICS

PROBLEM: A meteorite of mass M1 is incident with the relative velocity v0 and
impact parameter s on a planet of radius R and mass M2. Determine the largest s
for the collision to occur assuming that the two bodies attract each other according
to Newton’s law of gravitation.

Hint: Use polar coordinates.
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#2 : UNDERGRADUATECLASSICALMECHANICS

PROBLEM: Two comets of identical mass m simultaneously smash into the earth
at diametrically opposite points. The axis along which the comets strike is at an
angle θ with respect to the rotational axis of the earth. The velocities of the comets
are such that immediately after the collision the earth’s angular velocity ωe is un-
changed (no “impact torque” transmitted).

(a) Assuming that before the collision the earth could be considered a sphere with
the moment of inertia I0, find the new inertia tensor of the system, along its princi-
pal axes.

(b) Solve for the subsequent rotation of the system. Give the answer in terms of
the components of ωe(t) along the (body-fixed) principal axes.

Hint: A quick way to rederive Euler’s equations is to use the following relation
valid for any vector A:

dA
dt

=

(

dA
dt

)

body
+ω×A.

Solution

(a) The new inertia tensor is

Iαβ =





I⊥ 0 0
0 I⊥ 0
0 0 I0
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where I⊥ = I0+ΔI and ΔI = 2mR2 is the contribution from the comets.

(b) Euler’s equations are derived from dL/dt = 0, which entails (dL/dt)body =
L×ω. Here L is the angular momentum. Along the pricipal axes, Lα = Iααωα, so
that the equations of motion read

I1ω̇1 = (I2− I3)ω2ω3, I1ω̇2 = (I2− I3)ω3ω1, I1ω̇3 = (I2− I3)ω1ω2,

where I1 = I2 = I⊥ and I3 = I0. Therefore, ω3(t) = const, while ω̇1 = νω2, ω̇2 =
−νω1, with

ν= ω3ΔI/I0 = (2mR2/I0)cosθ.

We define the 1 and 2 axes such that ω1(0) =−ωe sinθ and ω2(0) = 0. Solving the
above equations of motion, we obtain

ω1(t) = −ωe sinθcos(νt), ω2(t) = ωe sinθsin(νt), ω3(t) = ωe cosθ.
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#3 : UNDERGRADUATEELECTROMAGNETISM

PROBLEM: Twelve capacitors of capacitance C each are assembled into a circuit
that have the topology of a regular cube. Find the capacitance Ctot that would be
measured between diagonally opposite nodes of such a circuit.

Hint: Consider a node not directly connected to the measuring device. If the elec-
trostatic potential of this node is φ, can you determine any other potentials in the
circuit from symmetry arguments?

Solution

Let the electrostatic potentials of two diagonally opposite nodes beV/2 and−V/2.
Let the sum of the electric charges on the three capacitor plates connected to the
V/2-node be Q. Then the corresponding quantity for the diagonally opposite cor-
ner is −Q, while the capacitance in question is Ctot = Q/V . By symmetry, the
three nodes adjacent to V/2-node have the same potential φ. The potentials of the
remaining nodes are all equal to −φ. Therefore, Q= 3q1 where q1 =C(V/2−φ).
Due to electroneutrality of the ±φ nodes, −q1+ 2q2 = 0, where q2 = 2Cφ. From
these equations we get φ = V/10, q1 = (2/5)CV , and q2 = (1/5)CV . Finally,
Ctot = (6/5)C.
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#4 : UNDERGRADUATEELECTROMAGNETISM

PROBLEM: A total charge Q is uniformly distributed on the surface of a sphere of
radius R. Find the force exerted by the lower hemisphere on the upper hemisphere.

Hint: One possible method of solution employs Maxwell’s electric stress tensor
given by (in CGS units)

Ti j =
1
8π
δi jE2−

1
4π
EiE j.

Solution

Method 1: The electric field of the sphere is equal to E(r) = (Q/r2)r̂ for r > R
and E = 0 for r < R. By symmetry, the force in question must be along the z-
direction. This force can be computed integrating the stress tensor over any surface
that encloses the lower hemisphere. It is convenient to choose such a surface to be
another hemisphere of a very large radius. In this case only its flat part contributes:

Fz = − TzidSi = −
E2

8π
dxdy = −

∞

R

E2(r)
8π

2πrdr = −
Q2

8R2
.

Method 2: The lower hemisphere does not exert a net force on itself, so the force
in question F can be computed according to

F =

z<0

Ez(r)ρ(r)d3r,

where Ez is the z-component of the total electric field. The charge density ρ(r) is
concentrated in a thin layer near the surface of the sphere. However, we cannot
immediately take the width a of such a distribution to be infinitesimally small. If
we do so, Ez(r) would be discontinuous and the integral would be ambiguous. The
correct procedure is to assume that a is small but finite and take the limit a→ 0 at
the end of the calculation. In spherical polar coordinates we find

F =

π

π/2

sinθcosθdθ
R

0

2πr2E(r)ρ(r)dr = −
1
4

R

0

E(r)
d
dr

[E(r)r2]dr,

The last equation follows from the Gauss law. In the limit a→ 0, we can replace
r2 by R2 in the integrand, which yields

F = −R2E2(R+0)/8= −Q2/8R2.
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#5 : UNDERGRADUATEQUANTUMMECHANICS

PROBLEM: A one-dimensional quantum particle with massm and momentum p=h̄k
is incident from x = −∞ on a potential V = λδ(x)−λδ(x−L). Find the transmis-
sion coefficient T (k) and the values of k for which |T | = 1.
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#6 : UNDERGRADUATEQUANTUMMECHANICS

PROBLEM: Two particles of mass m are fixed on the ends of a massless rigid rod
of length b. The location of the center of mass of the system is fixed in space but
otherwise the entire assembly is free to rotate about the center of mass. Find the
energy eigenvalues and eigenfunctions for this system.

Solution

The Hamiltonian of the system H = L2/2I where I = mb2/2 is the moment of
inertia of the rod about an axis going through the center of mass perpendicular
to the rod axis. The energy eigenvalues are EL = (h̄2/2I)L(L+ 1), where L =
0,1, . . . Each eigenvalue is 2L+1-fold degenerate. The eigenfunctions are the usual
spherical harmonics YLM(θ,φ).
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#7 : UNDERGRADUATE STATISTICALMECHANICS

PROBLEM: The second law of thermodynamics prohibits a transfer of heat from
‘cold’ to ‘hot’ in a two-body system. There is no such a restriction in a closed
system of several bodies. Show that explicitly by following these steps:

(a) Consider three thermal reservoirs with initial temperatures T 01 < T 02 < T 03 . In
simple physical terms, explain why it is possible to lower the temperature of reser-
voir No. 1 without violating the second law.

(b) Assuming the heat capacity of each reservoir is equal to a temperature-independent
constant C, show that the entropy of i-th reservoir is equal to Si =C lnTi, where Ti
is its temperature.

(c) Consider the specific case T 01 = 4(
√
10−3)≈ 0.65, T 02 = 1, and T 03 = 5. Taking

advantage of energy and entropy conservation, demonstrate that the lowest achiev-
able T1 is T1 = T 01 /2= 2(

√
10−3).

Hint: Show that the final temperatures of Nos. 2 and 3 must be equal.

Solution

(a) To cool down reservoir No. 1 one can employ an ideal heat engine as a refriger-
ator that receives power from another ideal heat engine that runs between reservoirs
No. 2 and 3.

(b) The entropy is computed as follows:

Si = δQi/Ti =C dTi/Ti =C lnTi.

(c) The cooling scheme described in part (a) works until reservoirs Nos. 2 and
3 equilibrate, as suggested in the Hint. To proceed formally, one uses conser-
vation of the total energy and entropy, which yields two constrains ∑Ti = const
and ∑ lnTi = const, respectively. The lowest T1 corresponds to the condition of
minimum of function T1−λE∑Ti−λS∑ lnTi, where λE and λS are the Lagrange
multipliers. One immediately obtains that T2 and T3 must be equal, confirming the
above physical argument. This entails T2 = T3 = (T 01 +T 02 +T 03 −T1)/2. Rewrit-
ing the entropy conservation in the form T1T2T3 = const, one arrives at the cubic
equation:

(1/4)(T 01 +T 02 +T 03 −T1)2T1 = T 01 T
0
2 T

0
3 .
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For the numerical values given, it reads

(1/4)T 31 − (2
√
10−3)T 21 +(2

√
10−3)2T1 = 20(

√
10−3).

By direct substitution one verifies that T1 = 2(
√
10−3)≈ 0.32 is the solution. (The

other two solutions T1 ≈ 5.0 and 7.9 are higher than T 01 .)
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#8 : UNDERGRADUATE STATISTICALMECHANICS

PROBLEM:

1. An ideal monatomic gas undergoes a quasi-static, isothermal expansion from
(PA,VA,T ) to (PB,VB,T ).

(a) Use classical thermodynamics to compute the heat Q and the workW input to
the gas and also the change in its entropy S in such a process.

(b) Derive the formula for the entropy change from a statistical mechanics argu-
ment and show that it agrees with your result in part (a).

(c) Compute the change in the Gibbs free energy G=U −TS+PV .

2. Find the enthalpy H =U+PV of nmoles of an ideal gas whose molecules have
f > 3 degrees of freedom each.

Solution

1. The work done by the surroundings is W = − VB
VA pdV = −pAVA ln(VB/VA).

(Equation of state PV = const was used.)

(a) By the first law, Q+W = ΔU = 0, so that Q= pAVA ln(VB/VA). The change in
entropy is ΔS= Q/T = (pAVA/T ) ln(VB/VA).

(b) The number of ways to place N indistinguishable particles in a volume V is
Ω ∝ VN/N! Hence, the entropy is given by S ' kBN ln(V/N)+ const in the limit
of large N. (The constant term is ultimately fixed by quantum mechanics.) The
change in entropy is ΔS = kBN ln(VB/VA). Using N = PAVA/kBT , the result of part
(a) is recovered.

(c) The change in the Gibbs free energy is given by

ΔG= ΔU −TΔS+Δ(PV ) = −pAVA ln(VB/VA).

2. From the equipartition theorem, the internal energy is given by ( f/2)nRT . Us-
ing the ideal gas equation PV = nRT , we then have H = [1+( f/2)]nRT .
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#9 : UNDERGRADUATEGENERAL

PROBLEM: Underwater explosions usually emit multiple shock waves because the
bubble of gaseous detonation products that forms immediately thereafter undergoes
a few cycles of oscillations. The period of such oscillations was measured to be
T = 3ms when a lump of a common explosive TNT was detonated at the depth of
h= 3.8km.

(a) Estimate the energy E released in the explosion using only dimensional argu-
ments, i.e., by constructing the quantity of dimension of time from relevant physi-
cal parameters.

(b) The mass of the TNT charge in the explosion was 2.27kg (5 lb). Predict what
oscillation period will result for a 10 Kton (= 107 kg of TNT) nuclear blast at the
same depth.

Solution

(a) The only relevant physical parameters of a deep point-source explosion are the
total energy released E , the mass density of the water ρ, and the equilibrium water
pressure p = ρgh. There is only one combination of these parameters that has the
dimension of time:

T = AE1/3ρ1/2p−5/6 = A(E/ρ)1/3/(gh)5/6,

where A is an unknown numerical coefficient. Solving for E , we obtain

E = A−3ρT 3(gh)5/2.

If A ∼ 1, we obtain an estimate E = 0.72× 107 J. (Actually, 2.27kg of TNT pro-
duces 0.95×107 J, so that A≈ 0.9.)

(b) For the nuclear blast we find T = 3ms× (107 kg/2.27kg)1/3 = 0.5s.
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#10 : UNDERGRADUATEGENERAL

PROBLEM: Estimate how long it takes a typical nucleon (neutron or proton) to fly
across the diameter of the nucleus of Ag (61 neutrons and 47 protons). Assume
that you can model the nucleus as a gas of non-interacting fermions moving in a
collective potential well. The radius of the nucleus is roughly R ≈ r0A1/3, where
A is the total number of nucleons and r0 = 10−13 cm. The mass of a nucleon is
1.67×10−24 g.

Solution

In a Fermi gas, particles propagate ballistically, with typical velocity v ∼ vF . The
time to cross the nucleus is therefore t ∼ R/vF = mR/h̄kF . The Fermi momentum
is of the order of the inverse proton-proton separation, kF ∼ 1/r0, so t ∼mRr0/h̄=
mr20A1/3/h̄∼ 10−22 s.
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#11 : GRADUATE CLASSICALMECHANICS

PROBLEM: A thin rod of length l is supported at one end by a smooth floor (see
figure). The rod is released from a configuration where it makes an angle θ0 relative
to the horizontal. Write down the Lagrangian for this system. Determine how long
it takes for the rod to fall to the floor (the answer in terms of a definite integral will
be sufficient.) Also determine how far the lower end moves during this time.

θ0

l
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#12 : GRADUATE CLASSICALMECHANICS

PROBLEM: A skier begins to slide down a ski jump shaped as a cubic parabola
h(x) = x− x3/(3a2), where h is the local height, x is the horizontal coordinate, and
a is a constant. The skier flies off at the point x = a. The initial velocity of the
skier, friction, changes in the body position or muscular forces generated by the
skier are all negligible. Find the height h0 where the motion started.

Solution

Method 1: The skier stays on the ski jump as long as the projection of the gravity
on the local normal exceeds the necessary centripetal force:

mg cosφ(x) >
mv2(x)
R(x)

,

where v(x) is the skier velocity, φ(x) = arctanh′(x) is the angle between the local
tangent and the horizontal, and R(x) is the local radius of curvature. The point of
detachment x= xd = a happens to be the point of maximum for the function h(x),
so that φ(xd) = 0 and 1/R(xd) = −h′′(xd) = 2/a. At this point the above condition
turns into the equality:

g=
v2(xd)
R(xd)

=
2
a
v2(xd).

From the energy conservation h0 = h(xd)+ v2(xd)/2g. Therefore,

h0 = h(xd)+
a
4

=
11
12
a.



The Lagrangian is

L = 1
2m

(
ẋ2 + ẏ2

)
−mgy

and there is a single constraint,

G(x, y) = y − h(x) = 0 .

The Euler-Lagrange equations are

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λ

∂G

∂qi
.

Thus, we obtain

mẍ = −λ h′(x)
mÿ = λ−mg .

The constraint is y = h(x). The constraint may be differentiated to yield

ẏ = h′(x) ẋ , ÿ = h′′(x) ẋ2 + h′(x) ẍ .

Substituting into the second equation of motion, we obtain

λ

m
= g + h′′(x) ẋ2 + h′(x) ẍ

and thus, from the first equation of motion,
(
1 + h′(x)2

)
ẍ + h′(x) h′′(x) ẋ2 = −g h′(x) .



NOTE: This equation of motion is also obtained by eliminating the holo-
nomic constraint y = h(x) at the outset, and writing

L = 1
2m

(
1 + h′(x)2

)
ẋ2 −mg h(x) .

The particle flies off the curve when the vertical force of constraint λ
starts to become negative, because the curve can supply only a positive
normal force. To evaluate y0, we must express λ in terms of y0 and x.
Therefore, we must eliminate ẍ and ẋ from

λ

m
= g + h′′(x) ẋ2 + h′(x) ẍ .

To eliminate ẍ, we can use the equation of motion. This gives

ẍ = −
(

gh′ + h′ h′′ ẋ2

1 + h′2

)
,

and thus

λ = m

(
g + h′′ ẋ2

1 + h′2

)
.

This has a simple interpretation at points where h′ = 0: λ = mg + mv2/R,
where R is the local radius of curvature.

To eliminate ẋ, using conservation of energy,

E = mgy0 = 1
2m

(
1 + h′2) ẋ2 + mg h(x) ,

yielding

ẋ2 = 2g
y0 − h

1 + h′2 .

Putting it all together,

λ =
mg

(
1 + h′2

)2

{
1 + h′2 + 2(y0 − h) h′′

}
.

The particle flies off when λ = 0. This means

1 + h′(x)2 + 2
(
y0 − h(x)

)
h′′(x) = 0 .

For h(x) = x− x3

3a2 , one obtains y0 = 11
12 a.
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#13 : GRADUATE ELECTROMAGNETISM

PROBLEM: Two halves of a spherical metallic shell of radius R are separated by a
small insulating gap. The alternating voltage V cosωt is applied to the top half and
the alternating voltage −V cosωt to the bottom half. Suppose that ω* c/R where
c is the speed of light. Compute the amplitude of the oscillating dipole moment of
the system and the time-average power it radiates.
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#14 : GRADUATE ELECTROMAGNETISM

PROBLEM: A conducting spherical shell of inner radius r = a rotates with angular
velocity ω = ωẑ and is immersed in the uniform magnetic field B = Bẑ. Find the
electric field in the vaccuum region enclosed by the shell (i.e., for r < a).

Hint: The first three Legendre polynomials are: P0(cosθ) = 1, P1(cosθ) = cosθ,
and P2(cosθ) = 3

2 cos
2θ− 1

2 .









Department Exam Fall 2005 17

#15 : GRADUATE QUANTUMMECHANICS

PROBLEM:A particle of mass m and charge e is confined to a cubic box of side
L. A weak uniform electric field E is applied parallel to one of the sides. If the
electrostatic potential due to such a field is taken to be zero at the cube’s center,
the change in the ground state energy of the particle has the form Δε= −(α/2)E2.
Calculate the coefficient α (i.e., the polarizability).

Hint:
∞

∑
n>0, even

n2

(n2−1)5
=
15π2−π4

3072
.
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#16 : GRADUATE QUANTUMMECHANICS

PROBLEM: Consider two spin-1/2 particles coupled by a Heisenberg interaction
Hint = Jσ1 ·σ2, where J is a constant and σi are the Pauli matrices. The spins have
magnetic moments µ1 = ασ1 and µ2 = βσ2, respectively. A uniform external
magnetic field B is applied. Find the exact energy eigenvalues for this system.

Hint: Show that the projection of the total spin on the direction of the magnetic
field is a good quantum number.

Solution

The Hamiltonian of the system is

H = Jσ1 ·σ2+B(ασz1+βσz2).

The operator σztot = σz1+σz2 commutes with the Hamiltonian; therefore, the eigen-
states can be classified according to three possible values of this quantum number:
1,0, and−1. The wavefunction for the first case is uniquely determined to be | ↑↑〉.
The corresponding energy is

E1 = (α+β)B+ J/4.

Similarly, the σztot = −1 corresponds to the state | ↓↓〉 with the energy

E−1 = −(α+β)B+ J/4.

However, σztot = 0 selects the two-dimensional Hilbert space c1| ↑↓〉+ c2| ↓↑〉. In
this space the Hamiltonian matrix becomes the 2×2 matrix:

H =

[

(α−β)B− J/4 J/2
J/2 (β−α)B− J/4

]

Diagonalizing this matrix, we get the last two eigenvalues:

E± = −
J
4
±

√

J2

4
+(α−β)2B2.
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#17 : GRADUATE STATISTICALMECHANICS

PROBLEM: In a simplified theory of the liquid-gas critical point (see figure) the
pressure P of the system is related to the density n = N/V and temperature T by
the truncated expansion P = nkBT − (b/2)n2 + (c/6)n3, where b and c are some
positive constants.

Figure 1: P–V diagram of a non-ideal gas (schematically).

(a) Find the critical temperature Tc, density nc, and pressure Pc in terms of b and
c.

(b) On the critical isotherm (i.e., for T = Tc), give an expression for P−Pc as a
function of n−nc.

(c) Calculate the isothermal compressibility κT = −(1/V )(∂V/∂P)T , and sketch
its behavior as a function of T for n near nc.

(d) Using the expression for κT found above, compute the temperature below
which κT < 0. Explain why this indicates that the description of the system ac-
cording to the above equation of state is unphysical below this temperature. Ex-
plain what is wrong in the formulation of the equation.



Department Exam Fall 2005 20

Solution

(a) The critical point is obtained from the conditions ∂P/∂n = ∂2P/∂n2 = 0 at
T = Tc = const. Starting from the cubic equation of state, we obtain kBTc−bnc+
(c/2)n2c = 0 and −b+ cnc = 0. From the second equation, we get

nc = b/c.

When substituted in the first equation, it gives

kBTc = b2/(2c).

From the equation of state, we then find

Pc = b3/(6c2).

(b) Using the coordinates of the critical point computed above, we find

P−Pc = −
b2

6c2
+
b2

2c
n−

b
2
n2+

c
6
n3 =

c
6
(n−nc)3.

(c) Using V = N/n, we get

κT =
1
n

(

∂P
∂n

)−1

T
=

1
n(kBT −bn+ cn2/2)

.

For n→ nc, κT ∝ (T −Tc)−1, which diverges at Tc.

(d) Clearly, κT becomes negative for T < Tc. Negative compressibility is unphys-
ical for a thermodynamic system because such a system would not be stable to
fluctuation. A small reduction in pressure exerted on the system would lead to a
decrease in volume, which would lead to further decrease in pressure until the sys-
tem collapses down to a very small volume. In the case of our system, the runaway
collapse is eventually curbed by the formation of a liquid phase. What is wrong
with the equation of state is the assumption that the system is homogeneous, as
reflected by the description with a uniform density n.
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#18 : GRADUATE STATISTICALMECHANICS

PROBLEM: The energy per unit cell e(m) and entropy per unit cell s(m) for a mag-
netic phase transition are given by

e(m) = −
1
2
Jm2,

s(m) = s0−
1
4
kBm2−

1
8
kBm4,

where m is the dimensionless magnetization per cell, and J and s0 are constants.
This expansion is valid for |m|* 1.

(a) Find the critical temperature Tc.

(b) Find and sketch the specific heat c(T ).

(c) Suppose a magnetic field H is imposed, so that

e(m,H) = −
1
2
Jm2− γHm,

where γ is a constant. Find m(H,Tc).

Solution

(a) The free energy per cell is

f (m,T ) = e−Ts

=
1
4
(

kBT −2J)m2+
1
8
kBT m4− kBT s0 .

Minimizing with respect to m, we find

m=















√

J
kBT − 1

2 if T < 2J/kB

0 if T > 2J/kB ,

from which we identify Tc = 2J/kB.
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(b) The specific heat is

c = −T
∂s
∂T

= −
T
4

(

1+m2
) ∂m2

∂T

=











kBTc(Tc+T )/16T 2 if T < Tc

0 if T > Tc .

Any sketch must show a discontinuity in c(T ) at T = Tc.

(c)With the magnetic field included, we have

f (m,T ) = −γHm+
1
4
(

kBT −2J)m2+
1
8
kBT m4− kBT s0 .

Setting T = Tc = 2J/kB eliminates the term quadratic in m. Minimizing with re-
spect to m then gives −γH+ 1

2kBTcm
3 = 0, or

m(H,Tc) =

(

γH
J

)1/3
.
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#19 : GRADUATE GENERAL

PROBLEM: Evaluate the integral

I =
∞

−∞

sin2 x
x2

dx.

Solution

The integral can be done by contour integration. Let z= x+ iy, then I = C dz f (z),
where

f (z) = sin2 z/z2

and C runs along the real axis. Since f (z) is analytic at all finite z, an arbitrary
segment (−ε,ε) ofC can be deformed into a semicircle z= εeiθ, π< θ< 2π, in the
lower half-plane. We call the new contour C1. Next, we write

f (z) = −
1
4
(e2iz+ e−2iz−2)

to get
I = −

1
4
[J(2)+ J(−2)−2J(0)],

where
J(a) =

C1

dz
z2
eiaz.

The contourC1 can be closed by a large arc in the upper or lower half-plane without
changing the value of the last integral if a is positive or nonnegative, respectively.
If a < 0, no singularities are thereby enclosed, so that J(a) = 0. If a ≥ 0, we get
J(a) = 2πi resz=0 (eiaz/z2) = −2πa. Adding all terms together, we obtain the final
result

I = π.
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#20 : GRADUATE GENERAL

PROBLEM: In an optical experiment, the transmission coefficient T of a film made
of some opaque material is measured. The thickness of the film is then calculated
according to the formula w= l ln(1/T ), where l is a known material parameter (at-
tenuation length). This formula is correct if the film is uniform. Consider however
an imperfect film whose thickness varies in space as a random number with the
distribution function

P(w) = Awexp[−(w−w0)4/σ4].

If the detector can measure only the area-averaged transmission, what film thick-
ness would be deduced from such an experiment? Assume that l * σ* w0 and
use the steepest-descent method to evaluate any integrals you need.

Solution

The area-averaged transmission is given by

T = A
∞

0

dwwe− f , f (w) ≡
(w−w0)4

σ4
+
w
l
.

Under the conditions specified, T can be evaluated by the steepest-descent method.
The saddle-point w∗ satisfies the equation f ′(w∗) = 0, which gives

w∗ = w0− (σ4/4l)1/3.

To the leading-order, T ∼ exp[− f (w∗)], so that the effective width of the film is

w= l f (w∗) = w0−
3
4

(

σ4

4l

)1/3

.


