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Undergradiate Mechanics

A uniform wheel, of total mass M and radius R, rolls down an incline plane without
slipping. The angle of the plane with respect to the horizon is & and gravity is g, pointing
downward as usual. Find the acceleration of the drum down the incline.
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Undergraduate Mechanics I ] soLZ.
A uniform wheel, of total mass M, and radius R spins at angular velocity ws, at the
end of a shaft of length £. The wheel and shaft are suspended by a string of length L, which
is tied to the other end of the shaft. The shaft and string have negligible mass. There is
gravity g, pointing down as usual. The spinning wheel exhibits gyroscopic precession, with
the shaft horizontal. The string makes an angle 8 with respect to the vertical. Assume
that B is small enough so that approximations like sin B =~ B are valid. Assume also that
B« /L 7
a) How long does it take the gyro and shaft to precess all the way around and return
to its starting point?

b) What is the angle 87
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Undergrad Stat Mech

Consider a ficticious three-level nucleus in thermal equilibrium with a heat bath at tem-
perature T'. In particular, all of the three levels of this nucleus have population ratios in
accord with thermal equilibrium. The ground state energy of this nucleus is Ey and the
ground state spin and parity are J™ = 0*. (The spin and parity quantum numbers label
the overall angular momentum and parity of the wave function for a given level.) The first
excited state has energy E; and spin/parity J™ = 1%, while the third state has energy E,
and spin/parity J™ = 3%. The laboratory (zero temperature) decay rate of the ground
state is measured to be Ao, while the laboratory individual decay rates of the first and
- second excited states are measured to be A; and A, respectively.

What is the decay rate of this nucleus in the thermal bath?
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Undergraduate Stat Mech/Thermo I- ot - L’
Consider the Sterling cycle, with the following four steps:
1) Isothermal expansion at temperature Ty from volume V4 to volume Vg > V.
2) Reveréibly decrease temperature to Tc < Ty at constant volume Vg.
3) Isothermal compression at temperature T¢ from Vg back to V.
4) Reversibly increase temperature from Te back to Ty at constant volume V4.

The gas inside the piston is ideal, with N polyatomic molecules (three rotational
degrees of freedom). '

a) What is the total work done by the engine in one cycle?
b) What is the change of entropy of the gas in the piston in step (2)? (Write your

answer)as positive if the entropy increases or negative if it decreases.)
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» Undergraduate quantum mechanics
Consider a theory with

H = (a'a + 1)Aw + Ca®al3,

with a! and a the usual harmonic oscillator creation and annhiliation operators. Find the

energy eigenvalues of this theory.

alnd = {n 1nd at|n) = [un |1 n+D

ocat® [nd = f(n+|)(n+2)(n+3)(n+3)("+2>("+7) In>

= O+ (n+DIND
‘n3 ore. skl ewergy esge»nvs",-»,-cs

E\B@nw(ls Ev\‘:‘ (”""-}:B)GDO + CCV\.J—-)}(V)-;Z)(H,,;)

V\:D,‘)?,"-"




Undergraduate quantum mechanics L-so 6
A particle of mass m feels the force of gravity, with § = —g%. The floor, which the
particle can not penetrate (not even a little), is at z = 0. Classically the particle sits on

the floor, with energy E = 0. Estimate the quantum mechanical energy of the particle in
its lowest energy state.
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O\ | | I“ sor. G

(1.) Order of Magnitude Estimates

(a) How long does it take a photon created at the center of the sun to random walk its
way to the surface? The mass of the sun is Mg ~ 2 x 10®3 g and the solar radius is
Ro ~ 7 x 10 cm. (Hint: Estimate the mean free path of the photon using the Thomson
cross section o ~ 1072 cm?.)

(b) Say that all sources of nuclear energy in the sun were suddenly shut off. At its current
luminosity (Le = 4 x 1033 ergs—1), how long would it take the sun to radiate away all its

internal energy? The central temperature of the sun is ~ 1keV.

(c.) Why is there such a large disparity between the timescales in parts (a) and (b)?
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PART II - SOLUTIONS
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Graduate mechanics
The Hamiltonian is

H = g1p1 - gap2 + ag3 — bg?
with a and b constants and the ¢; and p; canonical coordinates and momenta. Show that

F]_ — D _bQI

pa and F; =qiqo

are constants of the motion. Are there any additional constants generated by Jacobi’s
identity?
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Graduate mechanics j]:‘ $0L. IZ.
A particle moves along the curve

z = £(2¢ + sin 2¢) y = £(1 — cos 2¢)

in a uniform gravitational field in the negative y direction. Find the oscillation period

using action angle variables. (Assume that the maximum value of ¢ < 7/2.)
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Graduate quantum mechanics B ,TL - 0L | 5

Consider the scattering of a particle of mass m off a spherically symmetric delta
function shell of radius R.

V(r) =v3(r — R)

(a) What is the s-wave wave function and phase shift 6y for general wave vector k?
(b) What is the s-wave partial scattering cross section? (You can write it in terms of

known functions and quantities; you needn’t spend too much time simplifying the expres-
sion.)
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Graduate Quantum Iﬁechanics jI ) 60"', L’ |

A non-relativistic electron, with magnetic moment J = 1,0, is in a constant magnetic |

field B = ByZ. At time t = 0, the spin S = 17 is measured to be +% along the Z axis.

Find the probability P(t) for measuring the spin to be +-.“1; along the ¥ axis at a later time
t. Recall that the Pauli matrices are

01 0 —i 1 0
0z=10,ay=i0,0',=0_1.

{k% \ P> = -—/UBJ(?;)W; W>=(}}@
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Graduate electrodynamics I[' SOL. l5
Consider a solid sphere, of radius R, which is made of a substance of permeability
pi, with no intrinsic magnetization (i.e. B = pH). Outside the sphere is vacuum, with
permeability ug. There is a uniform, external magnetic field B.; = B7 filling space. Find
the magnetic field everywhere in space, both inside and outside the sphere.
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, Graduate electrodynamics I— SoL. 'b
Charges g and —q are separated by a vector cf(t), which rotates about its center (which
we take to be the origin of our coordinate system) in a plane. Find the leading term in
the vector potential A(F, t) at a large distance |7] = r > |d|. Be sure to take the finite
speed of light into account. Find the leading term in the magnetic field at large r. What
is the radiated power dP(,t) into solid angle dQ. (You should find that dP depends only
on7="7/r, indepen.dent of the magnitude r = |] as is reasonable for radiated, conserved

radiation energy.) Write your answers in terms of d and its various time derivatives.
—_— Q> _5(;(31 6__")?‘-:)‘(;”)
Qro= [dPx T X, €7 e
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math methods II‘ 3oL I?

o0 42-1
I(2) = / t dt.
0

Evaluate the function

1+t




math methods ﬁ" 0L I 6

n quantities z1, ..., are statistically independent; each has a Gaussian distribution
with zero mean and common variance: {(z;) = 0, (z:iz;) = 028;; Define the variable
r=+/3n; z7. Find the probability distribution P(r) for this variable, i.e.

(0= [ " drf(r)P(r)

for any function f(r). Fix the normalization of P(r) so that (1) = 1. Now compute (r?) for
general p (for p = 2 your answer should reduce to an answer which can easily be obtained
directly from the above (z;z;)). Your answer might involve I'(a) = J detto.
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Solution
(a) From elementary statistical mechanics of the free Ferm.1 gas, one has at T = 0 the Fermi energy
Ep = (37r 3n)3/3, where n = N/V is the dens1ty Thus for our system we have

K2 _
Ee(NeaV)P)= —2_1;(%,“:_0 2)J\Tel:)2 3

where kp = (373N, /V) /3,
(b) The nuclear entropy is

Sn = -Nnkn Tr(glng)
1+P_14+4P 1-P I—P)

= —Npk
”(21“2 +_21n2

(c) Weiting F = E, ~ TS, and setting 9F/0P ='o wé obtain

1+P

hzsz —2 1
TP A N kTl 75 =0,

which is equivalent to

K2 N,
P=t “2_ 3= .
anh (kaT(a s k) . P) |
This is the usual equation from Ising mean field theory. The critical temperature may be read
off:

WT= D= 1)

Thus, T, vanishes for densities greater than ne, where

(3)°

Toe = 31r’a3 )
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Solution.

Along the coexistence curve, the Gibbs free energy per particle, ¢ = G/N, must be the same
for both phases. (Incidentally, the Gibbs-Duhem relation says g = g, the chemical potential.)
Expanding the differential of g, we obtain '

18%
2 873

9%

1 ’y i
57 6p dT dp +3 == (dp)* +

dg = ang+agd 4=

5T = (dT)? + -

=—8dT +vdp - O (dT)2 +vadT'dp — -ivn (dp)"+
Setting dg, = dg) we obtain the result
0 = —AsdT + Avdp — 22 (g7y? dT dp — L A(vx) (dp)?
= p— 222 (dT)? + A(va) T dp — 2 A(wr) (dp)’ +

When As or Av is nonzero (i.e. a latent heat or a discontinuous volume change accompanies the

transition), we may stop at first order and we obtain the usual Clapeyron relation. In our case, -

Aas = Av = 0 and we must go to second order. This yields a quadratic equation for dp/dT,

dp dp | Acp _
Ax (dT) —2Aa 7 T o =0,

the solution of which is ‘
(.42) _Aa_ [(Aa)' Ag
dr coex - Ax Ax vTAx ’

(That one takes the above root of the quadratic equation is apparent from consideration of the case

Ak =0, when the equation becomes linear.)

Evaluating this expression with the data given yields

(%’) = (1 - +/2) x 10°Pa/K

= —4.14 X 10*Pa/K .



