.7y

{.-

~at the lower end. How long does it take for the

= R v i
;. - - " . - " -

[l TRl UURTR REES it e e U T g - . . . X .

. . N /
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_. Solutibn .

C#L UN DERGRADUATE MECHANICS

. PROBLEM A rope of uniform hnear den51ty W and total length.L is suspended

“from one end. It hangs vertically under its own weight. It is lightly tapped

perturbation to reach the top
of the rope‘7 » ‘ ' '

#1 UN DERGRADUATE MECHAN ICS

9]

| SOLUTION The tensmn at helght Z is T = 1492, SO the local wave veloelty is -

T(z)

v(z) ' vg—z

The propagatife.n time is _. '




-

L

Therefore

SRR
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#2 : UNDERGRADUATE MECHANICS -

PROBLEM: A bead of mass m is constrained to move along a rigid, frictionless

- wire attached to a rotating disk at an aijlgle 8 < g to the plane of the disk,
and at a radius R from’ the origin. The wire rotates with the disk with
- angular velocity w. At the origin of the disk is a mass M which exerts a o
gravitational force on m. Ignore the gravitational force of the Earth. '

(a) If 2 is the position of the bead along the wire, writé_dov‘v_n the Ld—_'
~ grangian function for the bead. e -

(b) Derive the equation of motion for the beépd using Lagrange’s equation.:

SOLUTION: a) .~

[S

‘#2 : UNDERGRADUATE MECHANICS

Ty

.\.

U=-

L=T-U<= §md3‘2 +5mlw(R +z cosd))” +

o1
Y

‘Therefore_

U B et A Y e

2 .
[(R+ zcosh)? + (zsind)?)s [R?+2Rzcosf+ 223

T gt gmlR e seosg)

_GMm
- [R?—I—QRxcosG-f-x?]%f'

~

= mwé(R + x cos ) cos i GM(R'COS.Q +z)h;g a
S - [R*+ 2Rz cosf + 222

o | T [R+ 2Rzcost+ o)k

i
- e




N ,_Solution 3

#3 UNDERGRADUATE ELECTROMAGNETISM o

PROBLEM A conductlng sphere of radlus R is in an external electrlc ﬁeld
o Ee:):t — EOZ H ’
?7 ' (a) Flnd the potent1al qb(r 9) everywhere

3 | b) Find the electrlc field E (1n spherlcal coord1 i
' conductor at r= R‘. L ek

s) just' : outside, ‘the

-

c) Suppose that acut is made at the equator of the conductor (at z'= 0)
How much force is requlred to hold the twor hemlspheres together'?

_&Z

#3 UN DERGRADUATE ELECTROMAGNETISM

| ; SDLUTION (a) The potentlal inside the conductor (r <'R) is ¢ = 0, and the" ’ o
potential outs1de (r > R)is ¢(r,0) = —Eo(r — R—) cosG

fe— 0 (b) The electrlc ﬁeld Just outmde atr = R is E = —7‘ = Ir—R = 3E0 C059 r\

( ) The energy denSIty is eoE2 Wh1ch is non-zero out31de the conductor
-and zero 1ns1de This glves a pressure :

13 = —60E2R2 / . cos® edo
' : 2 hemzsph,ere ) .
This. gwes for the force requlred to hold the hemlspheres together §

F = '—GOEO R2

- .Departmental Written Exam FA06

|
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. Solution 4

#4 : UNDERGRADUATE '*'EVLECY’?I‘ROMAGNETISM” |

PROBLEM: There is one conductmg sheet in the plane z = 0'and another in
_the plane z-= L. The lower sheet (i.e. z = 0) carries: charge per unit area
o and the upper one carries —a, where o> 0. Also the lower sheet carries -

© current per unit length yK and the upper one carries —yK The sheets
-»extend to Fo0 in z and y.

(a) Determme the scalar potent1a1 and the vector potentlal in the region
between the two sheets - :

(b) Suppose that the partlcle is ejected from the lower sheet with velocity
U = Zup. What is the minimum value of vy such that the electron will

~ reach the upper sheet? Hint: One way to solve this problem 18 to start
with the Lagmngzan :

#4 UNDERGRADUATE ELECTROMAGNETISM

SDLUTION The ﬁelds are E = za/eo and B= a:,uoK inside the sheets (and
zero outside). Integrate to find the potentials, using the:fact that they can

,only depend on z (symmetry) this glves ¢ = —za/ € and 4 = —yz,uoK

The Lagranglan is L= —mv +qv A q¢ Translatlon invariance in the z
and y directions imply that Pe = My, and p, = mu, — qzpeK are conserved.
With the glven initial velocity, this glves vy = 0 and mvy = qzugK. Also

- E = imi”+q¢ is conserved, so 2m(v +v2)— qza/eo '—mvo ‘The m1n1mum |

Vg is such that vz(z =L)= 0 50 '3 (qL,uoK) - qLa/eO = 2m1)0

y,

Ay
S

EN
N
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L ,#5  UNDERGRADUATE QUANTUM MECHANICS .
o ' PROBLEM A partlcle with mass m and energy E moves in the one-dunensmnal :
: vpotentlal V( ) given by V(z) =0 for 2 <0 and V(z) = ~Vj for z > 0 where -
Vo =0 ‘ o S ' o "1
(a) Solve the time-independent Sch6dinger eciuation for the 'vs}avefuriction
‘1/;( ) at all values of « with the boundary COI’IdltIOIl that the 1n01dent
ﬂIIXleI‘OIIlIII—“ —00. N S
K (b) Compute the transmission and reﬂectlon probablhtles from your results“ .
- Cin (a) _ . s .
(c) What are the transmlssmn and - reﬂectlon probab111t1es in the 11m1ts
Vo —0 and Vy — 00? ) ;
e : #5 UNDERGRADUATE QUANTUM MECHANICS _
' - SOLUTION SEE NCXT 'PA GsC
s
’ :
| .o 3
6
. _ o




>o)

M (\\/ Md&. ”é& ;z/}u_.,/{ QWJS : xﬁo.‘-;' o
. L X( ( A &.) _ L ,P( C | Dépanm_éh;a! Wr|ften Exam FA06 |

Solution 5 1




© Departmental Written Exam FA

¢

06« |

~ Solution




E
l
: ! Solution LD

Departmental ertten Exam FAOGN

- #6 : UNDERGRADUATE QUANTUM MECHANICS

) PROBLEM A one d1mens1onal Harmonic Oscrllator has momentum D, mass
‘m, and angular frequency w. It is subject to a perturbation with a potential

energy U = Azt where )\ is suitably small so that perturbatlon theory is

B apphcable

(a) Derlve the. expresssions for a and cfr in terms of z and D usmg the fact
that they satrsfy [a, aT] =1, H= ﬁw(ala + 1/2)..

(b). Calculate the energy shlft AE of the state |n) due to the perturbat1on

o to ﬁrst order in A, usmg creatlon and annlhllatlon operators

#6 : UNDERGRADUATE QUANTUM MECHANICS

SOLUTIDN.v SEE NEXT Pﬁ(,.c
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. Solution -

CHT UNDERGRADUATE STAT-ISTICAL MECHANICS

' PROBLEM An 1deal heat _engine is powered by two Teservoirs of equal heat

: capacrty C, which is temperature independent. As- the engine works, the
~ reservoirs gradually equilibrate. Find the overall efﬁcrency of the engine

from the starting. point where the reservoirs are at temperatures 17 and Ty
(T < T1) to the moment of complete equilibration. Efficiency is defined as
the work ‘done divided by the heat supplied by the hotter reservoir

#7 : UNDERGRADUATE STATISTICAL MECHANICS |

L ,”SOLUTION Let Tf be the final equilibrium temperature Ql the heat removed

from the hotter reservoir, and @, the heat transferred to the cooler reservoir.
- Then the efficiency is glven by the work done d1v1ded by the heat supphed
. by the hotter reservmr _ _ _

Q- _om-T)- c<T,4—T2)"=1 LT
_Ql--'“ ©CM-Ty) R

To find T}, we can use the conservation of entfopy

. (Bodr- Ty
-A-Sf']*j/ =0 (T)

&

\/TlT -~T2 1 ) T2‘

\/TITS Vn

- _;_,DéparimentalfWrit;en_E)'(am FA06
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Solution

<)

# 8: UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: A mass M = 1g of water at 20°C is forced through an insulated
porous plug under a pressure of 104 atm into a lab where the pressure is 1 atm.
Find the amount of water converted into steam. Assume that the density of
water is constant, its specific heat is C = 1 cal/(g x° C), and the latent heat of
evaporation is L = 540 cal/g. Here 1cal = 4.18J.

# 8: UNDERGRADUATE STATISTICAL MECHANICS

SOLUTION: What is described is the usual Joule-Thompson process (also called
“throttling” in chemistry and engineering). This process conserves enthalpy
H = U + PV because the entropy is unchanged and because the two pressures
on each side of the plug are constant. If, in the final state, a fraction z < 1 of
the liquid is converted into steam, we must have

b= (1 — z)h + zhf,

where 7, f, I, and s stand for “initial,” “final,” “liquid,” and “steam,” respec-
tively, and h = H/M is the enthaply per unit mass. Solving for z, we get

3 i 1 L
Lo MoR M-
Wy —hk T L

The numerator here is given by
(U P Ug P P, - P
hﬁ—h’=(—1+-1)——(—f+_f)=cf_ri..z‘ L
M p M p ( 7 P

where p = 10%kg/m?® is the density of the liquid. The final temperature is the
boiling point Ty = 100°C. Therefore, using 1 atm ~ 10° Pa, we get

1

N [4.18 x 103 — 510 - 3 ~ 0.
T 4.18“03“40[4 8 x 10% x (20 — 100) + 10°(10* — 1)/10%] ~ 0.29,

and so the answer is 0.29g.




1 0 :

0 TR AR
y o BRS Departmental Wntten Exam FA06
SOlUtIOI’I q
’ #9 UNDERGRADUATE MATH METHODS B
) PROBLEM Consider the functlon Fi(n) deﬁned by the 1ntegrall
. =3 e G 5g "
Fk(n)—‘/(; ».'II 62—"7-{-1,', : _‘031). )3a
Find an analytic .(polyhomial‘ inn) expression for
- =F2("7) - (—'ﬁ)
Hmt By zntegmtzng by parts show that
AR
| o dn kF',“"l( )
and start with Fo(n)- You:are‘ given ’
- LT
49.: UNDERGRADUATE MATH METHODS -
SOLUTION: SEE NexT PAGE
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Solution ?/

- Prob 9.
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~ Solution

410 : UNDERGRADUATE OTHER

PROBLEN:. Nucleons (neutrons and protons) can be regarded as composed |
of three massless relativistic quarks freely moving inside a spherical volume

with radius 7 and uniform energy per unit volume B inside the sphere. (The
energy density outside the sphere is zero) Given that the experimentally

‘measured rest energy of’ a nucléon. is' M ~-1000 MeV and the radlus of a

nucleon is ~ 1fm (10” m), estimate the magmtude of B in MeV /m?.

#10 ;. UNDERGRADUATE OTHER .

- :-SOLUTION The quarks are cornfined to w1th radlus r, 'so

OE/8r =0 implies that

W

-

, E ~ 3<h)+Br

hic=1. 97 X 10"13 MeV-rn 0 T P

1 97 X 10'13

4 1.'97 ><‘- 1-647 MeV‘m31 .

/

!




Comments on provb.levrﬁ’#ilo.

The problem, as stated, pr.ovilded::a model for the energy of the nucleon as consisting ofa

kinetic energy part (3 _—hf-) and a confinement energy, (g—zzr?) so that the total energy, E,

of the nucleonis  E=~3 ke i7zr3B'
If the energy density is uniform throughout the interior of the nucleon then
oF ' '
-0
or
and . _
g e T
4wt . s
' hc=197x107" " -
so that e
' "B =47x10%
Grading: - : )
1) Ifanswer set g—ﬂr3B =1000Mev. . 2/10
2) If answer recognized kinetic contribution he v 4/10
_ - r
-~ 3) If answer shows B ﬁ—f— and answer is correct order of magnitude 10/10
If numerical answer is of wrong order - 9/10
4) If set1000Mev =3 -—hi + g-}zﬂf and answer is of correct order 10/10
If numerical answer is of wrong order 9/10

§
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#11 : GRADUATE MECHANICS -

- PROBLEM: If the solar system were ir‘i’imersed.vintaluniformly dense spherical
cloud of Weakly-lnteractlng massive particles (WIMPs) then objects in the
solar system would experience gravxtatlona,l forces from both the Sun and

the cloud of WIMPs such that _
Sl

Assume that the extra force due to the WIMPS is very small (that is b K |
k/r3). Work to first order in b.. : : v ,

(a) Fmd the frequency of radlal oscﬂlatlons for a nearly cucula,r orblt 5/
(b) Find the average angular veloc1ty5

(c) Find the rate of precesswn of the perlhehon to lowest order in b usmg
the results of (a ) and (b) >

.

411 : GRADUATE MECHANICS

SOLUTION: ’ihe forc'evccjrre‘spo.ndsv.‘to a.potential energy




« 1d the equilrbrinrn angle is -

R - CHAPTER 10. MECHANICS

‘he kinetic encrgy, which s'eparafe;s into a term due to the bead’s mo-
on along the wire and a term due to the rotatlon of the bead with the .

“y

‘ire, is o SR ;
T= -;—mazéz + E_ma)z(a sin §)*. (10.803 :
‘he _]Jagrangian isL=T=V. Using Lagrange’s equation, - '
" 8L\ oL S
10.81
(ao) 0 =0 (1081)
. a0+gsm0 aw cos05m9-0 (1082)

L. an cqulhbrlum point 0 0, so g = aw?cos 0 orw? = g/a cos 4. This: ' 1
ation has a solution for w only if w? > g/a so the cntlcal angular )
' ]outy is ' - : . :

0y =cos™?! (_gz_> .
t aw D)

N . P B

E b) i the mass makes small OScillations arounﬂ the .equilib_ri.,um noinf._ :

» then we can. describe the motion in terms of a small parameter
= 0 00 The equatron of motion (10 82) bccomes - _ '
. '(10-.85)

a¢+gs1n(00 +¢) aw cos(90 + </>)sm(00+¢) = 0

'sing standard tngonometnc identities, the small a.ngle approx1ma.txons -
n¢ = ¢ and cos ¢ a2 1 and our solutron for 00 (10 84), it is easy to

10w that
b+’ (1 - w) $=0. (10.8§) |
' 'h__ié hzils‘the gueneral'vvselution o ' o
| | $= AcosQt + BsinQ,

; .

we=yf2, (1083

| .(10.8'?) |

(10.87) -

1.10. SOLAR SYSTEM'WIMPS - .~ _ - g3°

where - - L . o

a2w4 !

and A and B a.re arbxtrary constants The perzod of osc1llatxon is -

21r/Q

SOLUTION: Prob}:il .

L

Solutlon 1. 10 In plane-polar coordlnates the Lagranglan for a par- -

tlclc moving in a central potentxal V(r) is

b= gm +5) - Vo),

where m is the mass of the partxcle The 'potential is given in the

questxon as
v ==t o
The 6- -component of Lagrange s equatxon is -
o aL . . . ;
e :9—5 = mr» 6= constant =1 (10.91)
: Th_e hamr]tnnian of our system‘ is t_hen
H--= 21;'1 +27:r2 +V(r)= p' + Vﬁ(r),
' with Pr=ms and
(10.93)

The term. 12/2mr 1s referred to as an a.ngular momenturn barricr.”
Solvmg the equations of motion for this harmltoman is equlvalcnt to

- solvmg Lagrange s-equations for the Lagranglan

1 .
. L= 5777'.7"2.7'._ Veﬂ(r);' '

| (10. 88) |

- (1_0‘.’89) |

(‘10.’96-)--_

(10.94)

TN

(osy)

l ‘u




o4 _ ~ CHAPTER 10, MDCHANICS

' Thxs is a completely general result for the motlon of a partlcle in a
- central potential and could easily have been our. starting pomt in thns
- problem (e.g., Goldstein, Chapter 3). '

It may seem unnecessarily: long-winded to go through this proce- :

dure, but note that the sign of the angular nomentum barrier in (10. 94)
is opposzte to what we would have gotten if we had naively replaced 6

with I/mr? in the Lagrangian (10.89). This is due to the fact that the
Lagrangian is a function of the time derlvatlve of the p051t10n and not »
' ~of the canonical momentum.

The cquatlon of motion from (10 94) is

_eﬂ(r) RN ‘(1095)7‘ |

S thc partlcle isin a c1rcular orbxt at r =1y We requxre that the force '
" on 1t at that radlus should vanish, ’

'dr

"=fo

o ‘Usmg our expressxon for V; ﬂ (10 93), we derxvc an cxpressxon relatmg .

. the angular momentum [ to the radxus of the orbit To:
ro k

mrg

3

'VVe are mterested in- perturbatxons about’ thls c1rcular orbit. Provided.

. ‘vthc perturbatxon remains small, we can expand V., ﬁ(r) about ; T0,.

ﬂ(r)' ﬂ(ro) ‘l‘ ("‘ - TO)V'ﬁ(ro) + (r -~ ro)"’ r ) +-. el (10 98)

If we use thls cxpansion in the Lagranglan (10. 94) togethcr with the
condition (10 96), we find _

L=%—mr

whcre we have dropped a. constant term. This is _]ust the Lagrangian '

~ for a simple harmonic oscillator, describing a particle undergoxng radial
“oscillations thh frequency . :

o expa.nd in e(t)

bro—O S oeny

i - l(,- —ro) Vig(re), -(1'0 99)

w? = =Vig(ro). - (10.100)

1.10. SOLARSYSTEMWIMPS Y

Dxfferentxatmg eﬁ(r): twice gives us

3 ok - o
g +\b mw? ~(10.101-

_mrgj r0

We can chrmnate 1 between equatlons (10 101) and (10 97) to give th' '

frequcncy of: radlal osc111at10n

o - ko oap\M?r . .
| w:~(mr3 + ) T (10 102

W

“To. ﬁnd the rate of precessxon of the perlhellon .we.need to knov

" the period of the orbit. From the definition of angular momentum [-
equatlon (10 91), we ha.ve an equatlon for the orbital angular velocit;

Wy, .
- _d_ L SEN
1= o= (10 103

Let us wrlte r(t) =70 + €(t), where e(t) is sinusoidal thh frequency «
and average value zero. We substltute r(t) into equatlon (10 103) anc

do' Ea , R _
S dt T ma? ;(1“-+0(C )) (10 104, .

_"\To zcroth order in the small quantities br0 /k and e/ 7o, the penod of the
orbit T3 is the same as the period of oscillations T3 = 27r/w Therceforc

we can average ¢ over T rather than T} and still get zcro, to within

. terms of second order, which we are neglecting. The average angular |
- velocity is thcreforc : \ i

1= TINmro— mrg-l-;, (1 .1 5)

“where we have made use of (10. 97)

Now consider one complete perxod of the rachal oscxllatlon This

: takes place'in txme Ty =27 /w. In thls tlme the partz_cle travels along
its orbit through an angle of _ - e

o a ,/Ic =

.w \/Ic/mro+4b/m ._ _ - Y)




LR

os

- CHAPTER 10. MEGHANT

357.(3’ _. .
e 2( - W) :

therwords,the pa.rtlcle does ‘not quite B:bivt‘-tvhrqugi; 27 'l:;'efov;e’f_”
the radial o’s_c_:vil»latioh‘is_‘h completed. 'Each time around the perihelion. R
Precesses b"avc:'kvj'a,;d_:;:,‘throug"h‘,an angle: - - . TN

Yoy

Tho

SN oy

i

e

Lo (1008
-b) When 7 is large enough that F. ~ —br, we see that the forceislike -
‘that-of a linear spring. ‘In this case the planar motior. of the orbit can "
~ -be resolved into simple harmonic motion in each of its’ thteé cartesian
‘components. Thus the orbits will in general be ellipses; however, in -
- each case the sun will be at the center of the ellipse rather .than at one -

of the foci (’é;s’ is_the&case"for 1Newt9niafn '.gl'é-Vity). .

.

»




,\_M;Mm.m;rpf;.wm:. e R S t TR b ,.T.A S
- Departmenvtal Written Exam FA06

#12': GRADUATE MECHANICS

PROBLEM: A spherlcal marble of miass m and radlus a rolls Wlthout shppmg

" ¢, mear the bottom of a perfectly rough spherical bowl of radius b, Wthh is ﬁxed

T in p051t10n Calculate the angular frequency for small osc1llat10ns

#12 GRADUATE MECHANICS :

SOLUTION: The no shp condltlon is b0 = aqs The LagrangTan is

T L : %m( = a)202 + I¢2 + mg(b = a) cosH
l:‘ . =%m(b - (1)202 +. ;mb292 + mg(b — a)cosf -
Expaﬁdmg for small 9 glves '

L = —2- [m(b—a)2 _|_ gmb2 02 +_mg(b _ a) - %mg(b o a)9.2. : »

'so that

; o mglb—a) _ Sg(b—a)
| m(b—a)? + %:_mb% 5(b—a)? + 26 . :

t' L ‘ E j
]

:

13 . {

|
I ‘
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#13 GRADUATE ELECTROMAGNETISM _

PROBLEM Con81der a thm sphencal shell of radlus R centered on the sphencal

coordinate system 7,0, #. On the surface of the sphere is a current density K
- which produces a umform magnetlc field inside the shell directed along the

' polar axis, that is B= Boz 1n31de the shell Fmd K.
#13 GRADUATE ELECTROMAGNETISM
SOLUTION: SEE Nf >(-r ‘ﬁs},e PM:CS
3
s
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#14 : GRADUATE ELECTROMAGNETISM

PROBLEM: An electromagnetic wave
E(r,t) = Re[Eq ek T="]

B(r,t) = Re[By e/

is incident on a plane conducting surface. The wave vector k makes an angle
6 relative to the normal 1 to the surface. The wave is polarized perpendicular
to the plane of incidence, that is Eg is perpendicular to k and 1. Determine
the radiation pressure (the time-averaged force per unit area) exerted on the
surface. . :

#14 : GRADUATE ELECTROMAGNETISM

'SOLUTION:

15
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#15 : GRADUATE QUANTUM MECHANICS

- PROBLEM: Two electrons each of-mass m are placed in a one-dimensional box -

of Wldth L placed in an external magnetic field B in the z dlrectlon The
interaction Hamlltoman of the electrons is

Hipy = AS;-Sy—(p1+pe) B (1)

‘where the magnetic moment is ft3 2 = —f0 S1 2, where g is a constant.

(a) Find the possible energies of the system, and the quantum numbers (i.e.
spatial and spin quantum numbers) and multiplicities of the allowed
states.

(b) Write the energy as a mliltiple of h?/(2mL?) in terms of the dimen-

sionless parameters a = mL*A and b = poBmL?/h.

(c) Find the gfound state quantum numbers as a function of a and b. Give .

your answer by rnarking the quantum numbers in the a — b plane.

#15 : GRADUATE QUANTUM MECHANICS

SOLUTION: If the electrons are in spatial states n; o, then the energy is

E = 2mL2 (nl + n2) + A (582 - 58% - 58%) -+ /LoB (Slz + SQZ)

5 ,
' . ’ 3

e : 2 . . .

= 3 L2' |:7r (n-1 +n3)+a (sﬁ(s +1) = 5) + 2sz}

where s is the total spin of the systern and s,'is the total z component of
spin.

The states are given by 71,79, s, s,. By Fermi statistics, the net wavefunc-
tion must be antisymmetric, so for n; = ny the state must have s = s, = 0.

For ny # ny, one can have s = 1 with s, =1,0,~1 or s =0,s, =0, and each |
state has multiplicity one. Note that (n1,n2) and (ng, ny) don’t give different

states, because the wavefunction has to be antisymmetrized in 1 < 2. So

16

!
!
F .
}




the energies are

b2
2mL2? .

2 L 3 -
i [WQ (n? +n3) = 54 » §=0,.m =my

The lowest 'spin-O state has ny = ny = 1, with energy

K2

0= 3]

dmL? |

The lowest spin-1 state has n; = 1,n, = 2 with energy

R 1
- E(l,s,) = [57r2 + —a + 2bs,

2mL2?. 2

[w? (nd +n3) + §a+~2bsz}, s=1, 5, =%1,0, m #ny

E(0) is the ground state if E(0) < E(1, sz),.so that 2a + 372 >0, 2a+ 372+
2b > 0. This is shown as Region I in the figure. E(1,1) is the ground state if
b<0,2a+2b+372 <0, shown as Region II. By symmet%y, E(1,-1) is the

ground state in Region III.

17
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#16 : GRADUATE QUANTUM MECHANICS

\
|
1 i
1

PROBLEM: In studying the hydrogen atom one takes the proton to be a point
charge with mass M. Suppose instead that the proton charge is distributed
uniformly within the volume of a sphere with radius 7o = 107*° m.

(a) Using perturbation theory, calculate the shift in energy of the 1s level
of hydrogen to first order in the perturbation.

(b) Give an order of magnitude estimate of the ratio of the 2p and 1s level
shifts.

#16 : GRADUATE QUANTUM MECHANICS
SOLUTION:

The potential due to a uniformal spherical volume with net charge e and
radius rg is '

er 3e

. 2
v = L 2 <
27"3+2r0 ~(r<mo)
. ,
- = >
7", . (’f‘ TO)

where the constant of integration in the first expression has been chosen to
make U continuous at ro. ‘ -

The perturbation V in the Hydrogen atom potential is

22 362 o2
AV = ———+—
7 2r0+'r’ (r <o)
L E O, (7’ > 7‘0)
The energy shift is |
AE = (AV)

to first order in pertUrbeitibn théory. Fo-r the 1s state,
o N |
AE = /|¢|2AV = / anr?dr [y|? AV
0 -

18




bl

Since ry < ao, the typical scale of variation of the wavefunction, ¥ =~ (0),
and '
14

= 22 ()2

627"2 3¢2. 2
5

T0
" 2 25, |ET %€ €
AE = |¢(0)| /0 drredr [27% 27’o+ -
For the 1s state, )
L e )
v vvraoe :
SO

2,.2 2.2
2efrg._2¢e7rg

- AF =

5 a3  5apad

The ground state energy of H is —62/(2(10) = —13.6 eV, and ap = 0.529 x
10~ m, so

2 2
AE = (2% 136 eV)—Zg =39x10%V
: Va2

- The wavefunction of the 2p state vanishes at the Orgin. This suppresses
AE by an additional factor of r?/a2 ~ 10710 ' '

19
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'#17 : GRADUATE STATISTICAL MECHANICS

PROBLEM: A system of N 'bosoﬁs in two dimensions has an energy-momentum
relation ' o - '
e, =cp’

and density n =N /A (A=area). ¢ and f are constants.

(a) Show that at low temperatures the system will Bose condense, for some
values of f. Find these values of f. (In what follows, assumes that f
indeed takes these values.) Show that the Bose condensation tempera-
ture T, ~ n®. Find «a (in terms of f).

(b) Show that the entropy below T, goes as S ~ T7, and the “pressure”
below T. (i.e. its equivalent in two dimensions) goes as P ~ T7. Find
(B and « (again in terms of f).

#17 : GRADUATE STATISTICAL MECHANICS

SOLUTION: Use

= Z 2—leBe _ 1 - ne J p pm + (groundstate term).
P )
Let z = Bep’, so p = (zkT/c)'/f
| ' oo 2/f—id : . . ,
N ~ AT?S / i _"’”1 + (groundstate term).
' 0o < et _ . v

There is Bose condensation if the integral remains finite for z = e®# — 1.
The relevant limit of the integral to check is x — 0, where the integral
~ limg_,0 2% /~171*1 So there is Bose condensation if 2/f — 1 > 0, i.e. if
f < 2. The temperatureis T, ~ (N/A)/2.

(b) Use S = _(%It;‘)/.‘ and P=—(%)7, at 2 =1 for T below T, with

F=—kTInZ=kT» In(l-e")
p -
The sum is evaluated as in part (a). This gives F’ ~ AT*7+1 50 the entropy
S ~ T?/f and pressure P ~ T?/f+1.

20
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#18 GR,ADUATE STATISTICAL MECHANICS

PROBLEM: Cons1der a gas that obeys a modlﬁed van der Waals equatlon of
s’cate : : o

Pt SV - b= RT,

‘where V is the volume of one mole of gas, and a and b are constants De-

‘termine the critical parameters P,,V, and T, of this gas and evaluate the -

quantity RT e/ PeVe.

- #18 GRADUATE STATISTICAL MECHANICS

SOLUTION: Gwen that o N
- RT a e
: “V_b Sy
3 ~ the crltlcal pomt is determmed by the condltlons :
i3 . ‘ L
| o .,
oP . =RT  3a : ~ 3a(V-b)?
i '(517) (V DA 1‘
.- and o Lo ' o T |
- | (@P\ ' _-2RT 12 _ . oo 6a(V b !
' V), V-b3 Vs T TyE
| Equating the two, we get 2(V.—b) =V, or V.= 2b Substltutmg this result
1 * into either of the two expressmns for RT we get ‘ ey
: o FA L . _
- R PO
Tc c =

| | L 1662 T 16PRT
: Substltutmg V and T 1nto the equatmn of state we get
| | LTt TIen 8k 16T
L It follows that the ratio RT,/ PV,=3 /2. ¢ |
i‘
- 21 o
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#19 : GRADUATE MATHEMATICAL METHODS

- _/2“ do
- Jo a+bsinf

#19 : GRADUATE MATHEMATICAL METHODS
SOLUTION: SEE WEXT PA L€

PROBLEM: Evaluate.

where 0 <.b <a. .

22
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.#20 GRADUATE MATHEMATICAL METHODS -

o PROBLEM Fmd the Green S functlon for the dlﬁerentlal operator

dZ

dz?

~in the 1nterva,l [O 1] w1th the bounda.ry condltlon that f ( )= f (1) =0.

#20 : GRADUATE MATHEMATICAL METHODS ' " p .
SOLUTION The Green S functlon equat1on is | | "
S A @)
| 'S0 the solution that satisfies _the b_oqndaryrcondlt_lon is\
f = .A Ci —-lv(_g;.z;) ,. 0<z S‘aso
f % B (%— éel"’”) ,.‘ T <z <L | ~. ‘

The functiqh_ must be chtinuous _a_b’b Zo, ‘and have a jhmp of 1 in ilté_vslope,,

Ao = B (_ ) )

€

o that : ' o | ,

- 4 e
- 2(e? - 1)
v v e”‘°—e—10 .
R CENE
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