INSTRUCTIONS
PART I: SPRING 2006 PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. ( E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

Section: &1 §2 §3 &4 §5

Problems:

(Circeyour ' 1 2 3 4|5 6 | 7 8 9 10

seven choices)

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks, etc.) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;
b. Write only on one side of the paper;

Start each problem on the attached examination sheets;

/o0

If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.



CODE NUMBER: SCORE: 1

#1 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM: A grandfather clock has a pendulum length of 1.0m and a bob
of mass m = 0.5kg. A mass of 2kg falls 0.7m in seven days to keep the
amplitude of the pendulum oscillations steady at 0.03 rad.

(a) The quality factor @ of a damped oscillator is defined as

Q = 21 x average energy
=27

energy lost per cycle
What is the @ of the system?

(b) With no energy input from the falling mass, the pendulum obeys the
small angle equation of motion

O+260+wi0=0.

Find w, and 3.

0.7m

R

0.03 rad

Figure 1: Schematic of the grandfather clock, showing energy flow from
falling mass to the damped pendulum. The falling mass must be reset
weekly.



CODE NUMBER: SCORE: 2

#2 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM: A mechanical system consists of two particles, one of which moves
in three dimensions, the other of which is confined to a plane. The particle
masses are m, and m,, respectively. The potential energy of the system is

U(.’I,', y7 Z7 pa ¢) = V(’U,, U) 9
where
u=ax+Py+vz , v=y+aop.
Thus, the potential U depends only on two linear combinations of the five
degrees of freedom.

(a) Write down the Lagrangian and the equations of motion.

(b) Noether’s theorem says that to each continuous one-parameter family of
transformations of the generalized coordinates, there corresponds an asso-
ciated conserved quantity. For this system, identify all such one-parameter
families and conserved quantities.

(c) Is anything else conserved by the dynamics?



CODE NUMBER: SCORE: 3

#3 : UNDERGRADUATE ELECTROMAGNETISM

In unbounded vacuum, the initial electric and magnetic fields are given by

E(rt=0) = yf(z)
B(r,t=0) = 0.

Find E (r,t) and B (r,¢) for t > 0.



CODE NUMBER: SCORE: 4

#4 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM: Compute the force of attraction between a neutral metallic sphere
of radius a and a point charge g positioned a distance r from the center of
the sphere, where r > a.



CODE NUMBER: SCORE: 5

#5 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: A proton (spin—%) is in the spin state

=1(%A): )

where the spinor corresponds to the representation where, e.g., the state
with spin up along the z-axis is

=y ) )

(a) What is the expectation value for the angular momentum operator in
the z-direction?

(b) What is the expectation value for the angular momentum operator in
the x-direction?

(c) What is the expectation value for the angular momentum operator in
the y-direction?



CODE NUMBER: SCORE: 6

#6 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Consider a two state system governed by Hamiltonian H and
with energy eigenstates |E1) and |Ey) where H|E)) = E1|E;) and H|E3) =
Es|Es).

Two other states are:

\/§ )
_ By = |Ey)

At time t = 0 the system is in state |z). At what subsequent times is the
probability to find the system in state |y) biggest and what is this probabil-
ity?



CODE NUMBER: SCORE: 7

#7 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: A horizontal insulated cylinder is partitioned by a frictionless,
insulating piston (which prevents heat exchange between the two sides).
On each side of the piston, we have 30 liters of an ideal monatomic gas
(Cy = %nR and v = %) at a pressure of 1 atmosphere and a temperature
T = 300K. Heat is slowly injected into the gas on the left, causing the
piston to move until the gas on the right is compressed to a pressure of
P = 2 atmospheres.

(a) What are the final volume V' and temperature T on the right side?
(b) What are the final values of P, V, and T on the left side?

(c) What is the change in the internal energy AU for the gas on the right
side? How much heat @, did it absorb, and how much work W, is done to
the right chamber?

d.) What are the values of AU, W, and Q.. for the gas on the left side?
( if if g

Hint #1: For an ideal gas with adiabatic changes, PV7 is constant.

Hint #2: The internal energy of an ideal gas is a function of temperature
only.



CODE NUMBER: SCORE: 8

#8 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: Compute the mean energy fluctuation for a quantum mechanical
harmonic oscillator with mass m and frequency w at temperature 7.



CODE NUMBER: SCORE: 9

#9 : UNDERGRADUATE OTHER

PROBLEM: In a high vacuum system, a spherical chamber of radius R =1 m
is pumped through a small hole of radius ¢ = 3 cm. You may assume that
the pump is perfect in that no atoms pass back through the hole into the
chamber. The stainless steel chamber has been “baked” so that the room
temperature rate of outgassing from the surface is 10'? molecules/m?-sec
(primarily Hg). Determine the equilibrium pressure in the chamber at room
temperature.

Hint: The mean free path between collisions is large compared to R. You
may need the values ky = 1.4 x 10723J K1 and my, = 3.4 X 10~ 2"kg.



CODE NUMBER: SCORE: 10

#10 : UNDERGRADUATE OTHER

PROBLEM: Stars in mechanical equilibrium can sustain a net outward-directed
photon flux up to a limiting value, beyond which the rate of momentum
transfer from photons to electrons and, hence, to protons via the Coulomb
interaction, exceeds the local force of gravity. For a star of mass M =
1My ~ 2 x 10®3g what is the luminosity (total energy per unit time
radiated from the stellar surface) required to produce this critical flux?
Express your result in units of ergs™!; an order of magnitude estimate
is fine. You may find it useful to know that the Thomson cross section
for photon-electron scattering is o ~ 6.65 x 1072° cm?, the gravitational
constant is G ~ 6.67 x 10 8 ergcmg™2, and the rest mass of a proton is
mp ~ 938.26 MeV ~ 1 amu.



INSTRUCTIONS
PART II : SPRING 2006 PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. ( E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

Section: §1 §2 §3 &4 §5

Problems:

seven choices)

(Circle your 11 12 13 14|15 16 17 18 19 20

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks, etc.) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;
b. Write only on one side of the paper;

Start each problem on the attached examination sheets;

/0

If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.



CODE NUMBER: SCORE: 1

#11 : GRADUATE CLASSICAL MECHANICS

PROBLEM: A point particle of mass m slides frictionlessly along a hoop of
radius R and radius M. The hoop rolls without slipping along a horizontal
surface.

(a) What quantities are conserved by the motion?

(b) What is the frequency of small oscillations of the point mass, when it
is close to the bottom of the hoop?

M

Figure 2: A point mass m sliding inside a rolling hoop of radius R.



CODE NUMBER: SCORE: 2

#12 : GRADUATE CLASSICAL MECHANICS

PROBLEM: Consider a “mechanical mirror,” as shown in the figure below (the
horizontal axis is the x-axis, the vertical axis is the y-axis). The walls are
hard and curved with a surface +y (z). Take all motion to be in the z-y
plane.

(a) Without writing equations describe what will happen to a perfectly
elastic rubber ball injected at z, with critical velocity vzg, vy,. Supply a
few sketches.

(b) Assuming that |y|max < L, use adiabatic theory to determine the con-
ditions for a particle to be confined in this system.

(c) More generally, “characterize” what class of particles will be confined.
State your answer it terms of a phase space plot.

y(z)

I
5L

E 1
0 oL

Figure 3: The mechanical mirror.



CODE NUMBER: SCORE: 3

#13 : GRADUATE ELECTROMAGNETISM

PROBLEM: In a first collision, an electron with velocity v is incident with
impact parameter b on an electron that is initially at rest. The initial con-
ditions for a second collision are the same as those for the first except that
the electron at rest is replaced by a positron at rest. In both collisions, pa-
rameters are ordered as e /b < mvg < mc?, where m is the electron mass.
Since the motion is non-relativistic, the radiated energy from the two charge
system in each collision can be treated in the multipole approximation.

(a) For which of the two collisions is the total radiated energy larger? Be
sure to explain your answer carefully.

(b) Calculate the radiated energy for the collision with largest radiated
energy.



CODE NUMBER: SCORE: 4

#14 : GRADUATE ELECTROMAGNETISM

A thin spherical shell of radius R carries the uniform surface charge ¢ and
rotates about an axis through its center with angular frequency w, where
Rw < c. In this problem you will be asked to calculate the magnetic field
inside the shell (r < R) and outside the shell (r > R). Since V x B =0 in
both these regions, one can set B = —V &, for r < R and B = —V®, for
r > R, where ®; and ®5 are magnetic potentials.

(a) From Maxwell equations, write down the partial differential equations
satisfied by ®; (for » < R) and ®5 (for r > R). Also, determine the
boundary conditions satisfied by ®; and ®5 at r = R. Here, (1,0, ¢) is a
spherical coordinate system centered on the center of the sphere and with
the polar axis directed along the rotation vector w.

(b) Determine B; for » < R and B, for r > R.



CODE NUMBER: SCORE: 5

#15 : GRADUATE QUANTUM MECHANICS

PROBLEM: Nucleons in nuclei can be regarded as point-like Spin—% fermions
moving in a collective spherical square well potential some 50 MeV deep but
otherwise noninteracting. This “independent particle” model works remark-
ably well despite (really because of) the strong nature of the nucleon-nucleon
force. The spherical square well potential can be regarded as having radius
R ~ 1.2fm - AY3, where the nuclear mass number is A = Z + N with Z
protons and N neutrons. Take N = Z, treat neutrons and protons inde-
pendently, and estimate the average kinetic energy and speed of nucleons.
What is the rough minimum binding energy of a nucleon in this model?

Hints: Take the neutron and proton rest masses to be the same as that of
the proton, mp02 ~ 938.3 MeV. Remember that 1fm = 1073 cm and hc ~
197.33 MeV -fm. Treat the nucleons as having plane waves as wavefunctions,
i.e. treat the neutrons and protons as independent Fermi gases.



CODE NUMBER: SCORE: 6

#16 : GRADUATE QUANTUM MECHANICS

PROBLEM: Consider two linear oscillators each with spring constant k. These
oscillators are coupled by an interaction term H, , = ax, z,, where z; and

x, are the oscillator (displacement) variables, and a is a constant. Find the
energy levels for this system.

Hint: transform to new coordinates.



CODE NUMBER: SCORE: 7

#17 : GRADUATE STATISTICAL MECHANICS

PROBLEM: An interacting gas consists of hard-core spheres with a peculiar
three-body attraction. The equation of state is a modified version of the
van der Waals equation:

ksT «

Cv—vy 303

where v is the volume per particle, and where v, and « are positive.

Find expressions for the critical values T¢, pc, and vc.



CODE NUMBER: SCORE: 8

#18 : GRADUATE STATISTICAL MECHANICS

PROBLEM: Consider a generalization of the Ising model in which the spin
variable s; on each site ¢ may take the value 0 as well as +1. For convenience,
let the spins be arranged on a 3D simple cubic lattice. The total energy of
a given configuration {s;} is

H:—JZSZ'SJ'—,U,ZS?, (3)
(i.7) i

where (i, j) denotes nearest neighbor sites.

(a) Apply the Weiss mean-field approximation (i.e., replace the value of the
spin of neighboring sites with the appropriate mean field value) to obtain a
self-consistent equation for the mean magnetization o. It will be convenient
to use the effective parameters t = kgT'/(6.J) and § = e~ #/ksT

For the following it will be useful to assume that |o| < 1.

(b) For small 4, find the critical temperature t. (¢) below which spontaneous
magnetization occurs. Show that |o| o (te — t)*/2

(¢) Show that something goes wrong with the solution in part (b.) for
sufficiently large 4.



CODE NUMBER: SCORE: 9

#19 : GRADUATE OTHER

PROBLEM: Consider a uniform flux of neutral heavy particles (rest mass
mc? ~ 1000 MeV) with speeds ~ 1073 ¢ incident on a spherically symmetric
atomic nucleus with radius 5fm. Whenever these particles are inside the
nucleus they feel a weak binding potential V; = —2 X 1072 MeV. Outside
the nucleus the interaction potential is zero. Estimate the total scattering
cross section for these “Weakly Interacting Massive Particles,” or WIMPS.

If there was a number density 1072 cm ™3 of these particles moving at the
indicated speeds what mass detector would you need (assume that you are
using germanium nuclei — 72 amu — in the detector) to see one scattering
event per day?



CODE NUMBER: SCORE: 10

#20 : GRADUATE OTHER

PROBLEM: The index of refraction in the atmosphere of a planet varies ac-
cording to the law n(h) = ng — ah, where h is the height and both ny and «
are constant. Find the height h at which electromagnetic waves propagate
along a circular orbit around the planet. The planet’s radius is R.



Solution

W\ u. G. C’,\a.,s:\c,o»\ ’V\L.o-\\a%k\(, 8

(a) The average energy dissipation is

o (2kg) X (9-8m/s?) x 0.7m - _5
() = 7 x 24 x 36008 =-23x107J/s.

The average energy is
(E) = § x (0.5kg) x (9.8m/s?) x (1.0m) x (0.03rad)® =2.2x 10737 .

Assuming the dissipation is small, the natural period of the pendulum is

Thus,

y 2.21 x 1073 _
(2.3 x10-8J/s) x (2.0s)

Q=2nr

.(b) Clearly

_ [9 _ (98m/s 1/2_ o
“o = e"( 10m =31s

As for the energy, the equation of motion says that

L, d

E= E(%ma’c2 + %nwg.'z:"‘) = —2fmi? ,
hence, taking the time average,
(E) = ~2B (m3?) = —28(E)
Thus,
_ (E) _ Y _ -2 -1
B= 2E) ~ 2q =32x 1072571 .

\
Nota bene: The frequency of the oscillation is shifted by the damping from wy tow = —if+ \/wg — B2. The real part of
w determines the period of the damped oscillations, with T = 2r/+/w3 — B2. For our system, 82 /w3 = 1.1x107¢ < 1,
and we can approximate T' ~ 2 /w, to good accuracy.



Solution ‘.‘F\ 7 . O C\AFI,‘C&‘ ""‘*‘L(—)\a..‘\k)

(a) The Lagrangian is

L=1m, &%+ +23) + imy (B + A ¢?) — V(ex + By + 72,y + ad).

(b) The Lagrangian is rendered invariant under time-independent transformations satisfying dV' =0 and dp =0, i.e.

adr+fdy+~vdz=0 , dy+add¢=0 , dp=0.
The two-parameter family may be written as
o B
z(( () =z - EC1 + ECQ
y(cl’CZ) =y"<2
z(Clvcﬂ) =Z+C1
$(C1 G =d+a7 G
plé, ) =p .
The associated conserved quantities are
8L 98q
A=S 2L
! Z:aq.a BCi
[«
whence
_ _l . N _ E . . -1 2 i
A= amlz+m1z ) Az-amlz myy+a "mype.

(c) Since L/0t =0, fhe_ total energy is also conserved:

E=1im @+ + %) + imy (B* + 02 *) + V(ex + By + 72,y + ad).
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MIDTERM EXAM

Each problem worth 10 points.

1. Inunbounded vacuum, the initial electric and magnetic fields are given by
E(r,t=0)=9f(x)
- B(r,t=0)=0 .
Find E(r,t) and B(r,t) for t 20.

Blr,4) = {[ﬁ(y +) H‘fo—c—nj

Rl = AE%ZQL“" ~) - FW'C-WJ
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B F S-WwI.,

2006 Spring Exam - UG Stat Mech

A horizontal insulated cylinder is partitioned by a frictionless, insulating piston (which prevents
heat exchange between the two sides). On each side of the piston, we have 30 liters of an ideal
monatomic gas (C, =2nR and y =$) at a pressure of 1 atm and a temperature of 300K. Heat is

slowly injected into the gas on the left, causing the piston to move until the gas on the right is
compressed to a pressure of 2 atm.

(a) What are the final ¥ and T on the right side?

(b) What are the final P, ¥, and T on the left side?

() What is the change in internal energy AU for the gas on the right side? How much heat Q,
did it absorb, and how much work W, is done to the right chamber?

(d) What are the values of AU, W, and O, for the gas on the left side?

To simplify the arithmetics, you may express all energies in unit of atm-liter.
(Hint 1: For an ideal gas, under adiabatic equation, PV7 is constant.
Hint 2: The the internal energy of an ideal gas is a function of temperature only.]

Solution:

Let the initial pressure, temperature, volume of each chamber be £, =1 atm, T, = 300K,
V, =30 liters respectively, and the final pressure of the right chamber be P, =2 atm.
(2) Since the compression of the right chamber is adiabatic, we have AV = PV . Hence

V,=V,(R,/P)" =20 liters.
From the ideal gas law then, T, = T, (P, / Po)L;i = 396K .

(b) From mechanical equilibrium, we have P, = P, =2 atm . From volume conservation we have
V, =2V, -V, = 40 liters. Then, T, =T,(BV,/ RV,) = 800K .

(c) For the right chamber, we have AU, = C, -(T, - T,) since U only depends on the temperature
for ideal gas, and C,, is temperature-independent. In terms of the initial parameters,
nR=PRV,!T,,and C, =2 RV, /T,. Hence AU, = 2RV, (T, - T,)/ T, =~ 14.4 atm-liter .

As the process is adiabatic, O, =0, it then follows from the first law that the work done on the
right chamber is W, = AU, = 14.4 atm-liter . '

(d) For the left chamber, AU, = C, (T, - T,) = 2BV, (T, - T,)/ T, = 75 atm-liter . Since the left

and right chamber are always in mechanical equilibrium, then the work done by the left chamber
is the work done on the right chamber, i.e., W, = -AU, = -14.4 atm-liter. From the first law, it

then follows that Q, = AU, - W,, = 89.4 atm-liter as expected based on energy conservation.
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UG Statistical Mechanics Prgixiens1

Compute the mean energy fluctuation for a quantum mechanical harmonic oscillator with mass m and frequency w

at temperature T'.

Solution:
The energy levels are
En = hw(n+3).

The probability that the oscillator is in state n is

e"‘En/(kBT)
=7
oo
Z = Y e BnkaT)
n=0

The mean values (E) and (E?) are

(B) = S pnBa=tw) pn(n+})=hw((n)+3)
n=0 n=0
(B%) = 32 puB2 = K 3o ()7 = W (02 + ) +
n=0 n=0
The energy fluctuation is
(AE)? = (E?) - (E)2 = h%w? ((nz) - (n)z)

The mean value of n” is

Z 7 e~ (/D) (ko T)
Z?"" = S e 1/2)R] (k5 T)

n=0
PRIy e-""“/“m
T2 e/ (ks T)
o0
n=0

(n")

Now

Z A" =

n=0 1\_\
Differentiating with respect to A and multiplying by A gives

A
nA" =
R

Repeating gives

iHZAn - A()\"'1)

2 FESE

[0

(2)

®3)

(4)

(5)

(6)

®)



So

A
m =15
an _ AA+1)
() = a2
A
<n2> - (n)2 = m (g)
and so the mean energy fluctuation is
| A
AE)? = P ——
_a g eh/(kaT)
= Rw 1= e Twl(aT)2
ehw/(ksT)

2.2
= hw (hel Ty — 1)2 (10)
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Solution __# (R G"" ‘k«A M‘QQM\—\\'L S

Let 6 be the angle from a fixed point on the hoop to the point of contact with the surface, and let ¢ be the angle of
the mass point relative to the vertical, as shown in Fig. ??. The Cartesian coordinates for the mass point are then

z=RO+4+Rsing , y=R(l—cosg).

The Lagrangian is then
L=3MR*?+ 116+ im(RO+ R cos¢)® + im(R ¢ sin ¢)* — mgR (1 — cos ¢)
=1 (& +M+m)R?6% + imR? §* + mR? cos ¢ $6 — mgR(1 — cos¢) ,

where I = MR? for a perfect hoop. Note that L is invariant under § — 6 + ¢, where ¢ is a constant, which means
that there is an associated conserved quantity, which in this case is just the z-component of the momentum,

1 8L . .
P,= 1oL _ (s +M+m)RO+mR¢cosg .
R 59
The other conserved quantity is the total energy,
E=T+V
P? I+ MR? + mR? sin’

— ) 2 .2 _
2(fr +M+m) 2 (I + MR? 4+ mR2) mR?¢* + mgR(1 — cos¢) .

(2) The conserved quantities are P, and E.

(b) For |¢j « 1, we have

I+ MR? i -
E=E,+ 2 + MR + mR3) -mR? % + %ng¢2+O(¢4) :
Setting £ = 0 we obtain
$=—w2¢ )
with
a_ (14 MR _\g
\ w ’(1+I+MR2>R‘

For a perfect hoop with T = MR2,
2 _ myNe
= (1) &

\
\
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Solution ‘:9)#)7} Cvrap} S")'Pv“} R\

Multiplying the equation of state by (v — v,) v3/p, we have the equivalent form

T o o
Fv Ev"—(v +—ka—>v3+— -y, =0.
() (1] p 3p 3p 0

‘Note that F(—o00) = 400 and F(0~) < 0, and furthermore that F”(v) > 0 for v < 0. These three features mean that
F(v) has precisely one root along the negative v axis. At the critical point, this equation must take the form

+Qw-v)=0,
for some ). Multiplying out the factors,
F(v) =v* ~ (3u, — Q) v* +3v, (v, - Q) v? + 22 (3Q —v)v -

T o a
=v4—<v +h)v3+——v——v
0 Dc 3pc 3pc

o

Equating coefficients of the various powers of v, we obtain,

3vc—Q=v0+kBT°
De
v, — Q=0
a
v (3Q - c)=5c‘
Q=2
v 3pcv°
Solving, we obtain
Q=vc=2vo
=_2_
Pe= 1853
T = —a
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2006 Spring Exam — Grad Stat Mech

The s = 1 Ising Model — Consider a generalization of the Ising model in which the spin
variable s, on each site i may take the value 0 as well as +1. For convenience, let the spins be

arranged on a 3D simple cubic lattice. The total energy of a given configuration {s,}is

g —— 2
H=-J E <ips 55 /.LE 5
where (i,7) denotes nearest neighbor sites.

(a) Apply the Weiss mean-field approximation to obtain a self-consistent equation for the mean
magnetization o. It will be convenient to use the effective parameters ¢ = k,T /(6J) and
S=ehl

For the following, it will be useful to assume o | < 1.

(b) For small 8, find the critical temperature ¢,(§) below which spontaneous magnetization
occurs. Show that |G | e (¢, —1)"/* immediately below the critical temperature.

(c) Show that something goes wrong with the solution in part (b) for sufficiently large 6.

Solution:

(2) In the Weiss mean field approach, we replace the value of the spin of the neighboring sites by
the mean value, i.e., z(i S8 = 62‘,5‘,. - for the simple cubic lattice for which there are 6
neighbors per lattice site. Then the mean spin value o is computed self consistently as

2 6JsGIAT 3 r
. e“" ol -glt
s={0.tl)s ¢ e’ —e

c= = .
6JsaIkT 2 IXT S+ alt —alt
et e —e
Z:-(o.u) €

(b) Assummg that | 0| « 1, we expand the righ-hand side of the above mean-field equation in
powers of o and obain

o‘[6+2+(0'/t)’+0(0'/t)“]=26‘/t+§(0/t)3+0(0/t)5.

. For

The critical temperature occurs where the first-order term in o vanishes, i.e., at ¢, = 5
+

temperature slightly below 7.(5), we have
o[f— %] =i(c/ty -o(c /)

orlol=t-[2e-1)]/[1-+]=[2e-1))/[1-%].

(c) From the mean-field solution for ¢ obtained above, we see that something goes wrong when
31,(6)=1. Using the expression for .(8) obtained above, we find that this occurs at § = 4.
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