INSTRUCTIONS
PART |
PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the exam.
Ask the proctor if you are uncertain about the meaning of any part of any
problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. ( E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions only.

Circle the seven problems you wish to be graded:

Section: §1 §2 §3 §4 §5

Problems:

(Circleyour |42/ 3 4|5 6|7 8/9 10

seven choices)

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens & pencils,
calculator and food items. Please deposit your belongings (books, notes,
backpacks, etc.) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;
Write only on one side of the paper:
Start each problem on the attached examination sheets;
If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is written
on each of your exam sheets.

Qoo

*Colored scratch paper is provided and may be discarded when the
examination is over.

At the conclusion of the examination period, please staple sheets from each
problem together. Submit this top sheet to one of the proctors, who will check
that you have circled the correct problem numbers above. Then submit your
completed exam, separated into stacks according to problem number.




CODE NUMBER: SCORE: 1

#1 (SECTION 1)

PROBLEM: A hoop of mass m and radius r rolls without slipping down an
inclined plane of mass M, which makes an angle o with the horizontal.
Find the Lagrange equations for the hoop and the plane if the plane can
slide without friction along a horizontal surface.
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Undergraduate Mechanics Problem 1

A hoop of mass m and radius r rolls without slipping down an inclined plane of mass
M, which makes an angle a with the horizontal. Find the Lagrange equations for the
hoop and the plane if the plane can slide without friction along a horizontal surface.

Solution

Let us choose &5 as our generalized coordinates. The x,y coordinates of the center of the
hoop are expressed by

(1)

x=£+Swsa+ rsina
y=roosa+(f-S)sha

Therefore, the kinetic energy of the hoop is !

Tocp =%m (x2 +j;)+%21'52

=5 |(E+Soosa) +(-sona) |+ 5 @
Using I=m2* and S= mp, (2) becomes
Thoop = % m [25‘2 + &+ 285 oosa] 3

In order to find the total kinetic energy, we need to add the kinetic energy of the
translational motion of the plane along the x-axis which is

1 .
Tphne = E M 52 (4)
Therefore, the total kinetic energy becomes
T=mf>‘2+%(m M) E* + mES cosa (5)
The potential energy is
U=mgy=mg[roosa+(2—s)sina] (6)

Hence, the Lagrangian is

l=m.é‘2+%(m +M)£2+mé-‘éoosa—mg[roosa+(f—s)s:‘na] %)
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from which the Lagrange equations for £and § are easily found to be

2mS+mEcosa-mgsina =0 8

(m+M)é+mScosa=0 9

or, if we rewrite these equations in the form of uncoupled equations by substituting for
£ and §, we have

b




CODE NUMBER: SCORE: 2

#2 (SECTION 1)

PROBLEM: A mass M moves horizontally along a frictionless rail. A pen-
dulum is hung from M with a weightless rod and mass m at its end. The
length of the rod is b. Find the eigenfrequencies and describe the normal
modes for small oscillations.
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Undergraduate Mechanics Problem 2

A mass M moves horizontally along a frictionless rail. A pendulum is hung from M with
a weightless rod and mass m at its end. Find the eigenfrequencies and describe the normal
modes.

Solution

x, = x+bsin§; X =X+l cosh
y,=b-bcosf; y,=Hdsinb
Thus

r=suiaom (i + i)

:EM¥+im(k2+b292+2bjﬁoosﬁ)
2 2

U=magy, =mgb(1—oos€)
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For small §, cos#0 1~ % - Substituting and neglecting the term of order 624 gives

T=E(M tm)+im (b292+2b5<9)
2 2

v=2Pg
2
Thus
_ M+m mb
m= mb mP
0 0
A=
o ws
We must solve

-0°(M +m) -@’mb
-&*mb mgb—-w’mb

which gives
&*(M +m)(@’mb ~mgh)~0'm* =0
a)z[a)"sz—mgb(m +M):|= 0

Thus

Substituting into this equation gives

&, =0 (k=2,r=1)
bm
= k=2,r=2
2 (m+M) % ( = )
Thus the equations
X=a,m+a,n,
O=aym+a,n,

become

Sol g5 2



&y 1,

=T
O=a,n,
Solving for n,, 7,:
6
n,=—
)
X+ il g
(m+m)
n =
a

n, occurswhen n, =0;0r8=0

bm
n, ooccurswhen n, =0;orx=~——>-"-—-¢

(m+M)




CODE NUMBER: SCORE: 3

#3 (SECTION 2)

PROBLEM: A long cylindrical solenoid of radius R is tightly wound with a
single layer of wire (see figure). The number of turns per unit length is N /L.
The wire breaks when the tension in the wire is greater than 7. Determine
the maximum current that can be carried by the wire.

N/L turns/length
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SOLUTION

The magnetic field in the solenoid is given by

LB—4—7FNI B—gﬂf
c L

From the stress tensor, the transverse pressure (radial force/area) on the
coil is B%/8x.

Net force on top half is given by

T 2
N F, = L/ Rd0B—7r sin 6
2
= LR——[— cos 9]/ = 2LRB;

The tension in each wire is

_F 2LRB2 LR [47rNI]

2N 2N 81 N87r c L
2rRN ,
T = fI
2 _ C2LT
" 2rRN



CODE NUMBER: SCORE: 4

#4 (SECTION 2)

PROBLEM: A solid piece of dielectric is characterized by a permittivity epsilon
and has the shape of a hemisphere of radius R. The hemisphere is glued
flat side down to a grounded conducting plane (see figure). High above the
plane, a uniform electric field Ey is directed vertically down. Determine the
electric potential in and around the piece of dielectric.

[T
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CODE NUMBER: SCORE: 5

#5 (SECTION 83)

PROBLEM: A monatomic classical gas is contained in a rectangular box of
base size wy X wy and height h. The N atoms with mass m that make up
the gas are subject to the linear potential

U(z)=b-2

where z is the vertical coordinate. Assume that the temperature T is uniform
in the box.

(a) Show that the free energy of this system is

_ wxwykT § mkT __ _—bh/kT
F= NkT[ln(—bN )+21n 57 ) +In (1 - AT |

(b) From the free energy, find the total force exerted on one of the sidewalls
of the box.

(c) Find the number density of the system as a function of z.

(d) Using the ideal gas law, compute the pressure as a function of z. Show
the relation between your result here and that of part (b).



5

Z

0es :O(—

Solution:

(a) The molecules in the gas are not interacting, but they do see the external potential. Since they
are monatomic, there is no internal energy. Hence the partition function is given by
L zy
NI
where Z1 is the partition function for a single molecule, which is

d’x &’p )
Z, =f ) exp[—ﬂ(p /2m+bz)]
ww { \3/2
x "yl _m 512 ~bhIkT
= kT 1-e
b 2] D ( )
This yields the free energy
kT |
F=-kTInZ = -NkT ln( dat’ ) + Eln( mkl;) + ln(l - e‘bh/kr)
bN 2 \2#h
(b) The total force on orie of the sidewalls, e.g., in the x direction, is given by
oF  NkT
-f; E ————
w,_ w,

(¢) The number density is proportion to the probability of finding a molecule at height between z

7/ and z + dz. This probability is -

5

-bz/kT ~bz/AT
dz b
p(z)=- 2 = foe bhIKT
fﬁdz e 1-e”
0

The number density is then by the mean number between z and z + dz divided by the
volume Adz:

Np(z)dz Bbe '
w,w dz w,w, (1- ey

n(z)=-

N\

(d) Using the ideal gas law, we have that the pressure as a function of z is

be—bz/kT
P(z) = n(2)kT = .
( ) ( ) way(l _ e—bh/kT)
The average pressure is then \
= 1 NkT
P=—{ P(z)dz = .
hﬁ) (2)dz - w,h

The total force is on the wall is just the average pressure times the area of the wall., E.g., in the x-
direction, f, = P- w, - h which recovers the result of (b).



CODE NUMBER: SCORE: 6

#6 (SECTION 3)

PROBLEM: A man takes a series of steps along a one dimensional line. His
motion depends on a series of completely random events: the throws of an
ordinary six-sided die. Each time he throws the die, if the number is odd
(i.e. 1, 3, or 5), he takes that many steps to the left. If the number is even
(i.e. 2, 4, or 6), he takes that many steps to the right. All steps are of length
a.

(a) After N throws of the die, what is his average displacement, (X N7

(b) How many throws of the die are necessary before the magnitude of (Xn)
becomes greater than the root-mean-square fluctuation,

Ay = <X12\/> - <XN)2 .
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SOLUTION
(a) We have

N
Xy=a) o;,
i=1

with o; € { - 1,+2, -3, +4, -5, +6}. Thus,

(0)=5(-14+2-3+4-5+6)=+1,
and thus (X,) = 1 Na.

(b) The root-mean-square fluctuation in X is \/AN , X

~. .

Ay = (X3) — (Xy)?
N
=a*>"{(o10,) = () (o)}
1,3
= NaQ{(cr2) - (0)2} .
Now compute

(o) =
(@) =3(1P+22+ 32+ 42+ 52 +6%) = &L,

and thus
’ 2 79 2
MN_ (% - %)Na = 11—2Na .

P

In order fbﬂ‘r‘le ~| > Ay, we must have

B —

iNa> /1% V/Na = N> 19
2 12 3

Thus, we must have N > 60.



CODE NUMBER: SCORE: 7

#7 (SECTION 4)

PROBLEM: Two atoms are bound together in a potential that only depends
on the distance between them,

Vir)= %puﬂrz

where p is the reduced mass of the two atoms. Due to the spherical sym-
metry of the problem, the energy eigenstates can also be eigenstates of the
L? and L, operators. One can solve the radial equation in the usual way,
using a power series and obtain a recursion relation.

$(7) = R(r)¥em (6, 9)
_ [
y= ‘TT
R(y) = 3 ay e /2
k=0

_(2%+2k+3)-2E
2T 22l k+3)
a1=0

The last equation above is derived along with the recursion relation and
indicates that all the odd terms in the series must be zero.

(a) Show that the power series must terminate.
Now let ag,, be the last nonzero coefficient in the power series (which
has only even terms).

(b) Show that the energies are quantized and derive an expression for E
in terms of the quantum numbers n and ¢.

(c) Now consider the four lowest energies of this system. What are these
energies and how many degenerate states are there at each energy.

(d) Give the quantum numbers n, £, and m for all of the degenerate states
at each energy.
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Solution
The wavefunction must be normalizable for any physical solution to the problem, however, the
recursion relation gives coefficients that do no fall off rapidly enough for large k.

_(2+2%+3) -2 9 )
e = (20t k3™

Note that this is the power series for et¥” so the wavefunction will diverge at large r. To avoid this
divergence we must terminate the series at some k. We can do this simply by making the numerator
zero in the recursion relation.

2F
(20 +2k+3) - == =
2E e+ 2k +3)

hw

E=(f+k+§)hw %

E-= (€+2n+g)fw pl
e e e g et

The value of k at which we terminate is 2n according to the problem so we make that replacement
in the last step.

The ground state energy is E = %hw We can get this if £ = 0 and n = 0. Of course m = 0. This
would be called the Os state. =

A\
The first excited state energy is £ = 3hw. We can get this if £ = 1 and n = 0. There are three
states since m = —1,0, +1 are allowed. This would be called the Op state. There are 3 degenerate
states. =~

The second excited state energy is E = Zfiw. We can get this if /=0 and n = 1. Of course m = 0.
We can also get his if £ = 2 and n = 0. There are five states since m = —2,—1,0,+1,+2 are
allowed. These ‘would be called the 1s and 0d states. There are 6 degenerate states.

]
The third excited state energy is E =,92hw‘ We can get this if £ = 1 and n = 1. There are three
states since m = —1,0, +1 are allowed. We can also get his if £ = 3 and n = 0. There are seven
states since m = -3, -2, —1,0,+1, 42, +3 are a,llovged. These would be called the 1p and Of states.
There are 10 degenerate states. “\ -



CODE NUMBER: SCORE: 8

#8 (SECTION 4)

PROBLEM: HCl is a diatomic molecule with a distance between the atoms of
about 1.3 Angstroms. Calculate the rotational absorption spectrum for pho-
tons incident upon HCl at room temperature. You may assume the molecule
remains in the vibrational ground state and that the distance between the
atoms remains constant. Only consider the transitions which are lowest or-
der in a and hence appear as strong lines in the spectrum. Give the lowest
6 absorption energies in eV. Assume the HCI molecule is made of regular
Hydrogen with a mass of 939 MeV/c? and Chlorine 35 with a mass of 32872
MeV/c2.
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Solution
Under the assumptions given, energy due to rotation is simply 12‘—; classically. Similarly the angular

term in the Schédinger equation is 2{1—35 which amounts to the same thing. We know the eigenvalues
of the L? operator so the rotational energies are simple.

2
g A+ A’
2ur?

At room temperature, many of the rotational levels are populated, however, the strong absorp-
tion lines are for A= 1 since they are the Electric Dipole transitions. So the photon energies
corresponding to the ong absorption lines are

” ’E _ e+ — e )2 2@+ 1)R2
- 2ur? T 2ur?

for the £ of the initial state 0,1,2,3,4... (%

We now need to plug in t}\i'e numbers. The reduced mass is about 913 MeV/c2.

_ E+D(he)®  (£+1)(1973eV A)2 _
E= (ne?)r?2 (913 x 108)(1.34)2 0.0025(¢ +1) ev Q\

(Note that at room temperature, these exitations are about a factor of 10 less than kt.)

The lowest energy absorption lines are then at 0.0025, 0.0050, 0.0076, 0.0101, 0.0126 and 0.0151 ™
eV. They are evenly spaced.
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#9 (SECTION 5)

PROBLEM: An early experiment to accurately measure the speed of light was
based on a rapidly rotating mirror. As shown in the somewhat simplified
diagram below, a light source emits light through a narrow, vertical slit, the
image of which is viewed in the experiment. Light from the slit is reflected
by the rotating mirror shown at the right of the diagram. A key element
of the experiment is the lens L which has a focal length f = 10 m and a
diameter d = 0.1 m. The distance between it and the rotating mirror is set
to be f as is the distance between the slit and the rotating mirror. A fixed
mirror is placed at a distance of 2f from L so that there is an image of the
slit at the location of the fixed mirror. The fixed mirror is carefully alligned
to be perpendicular to the line from the center of the mirror to the center
~of the lens.

All together, with the rotating mirror held fixed, light travels from the slit
to the the rotating mirror, through L, to the fixed mirror, back through
L, back to the rotating mirror, and finally it is reflected by a half silvered
mirror onto a fine glass scale which is used to measure the position of the
image. The scale is at the same distance from the half silvered surface as is
the slit. With the rotating mirror fixed, there is an image of the slit on the
glass scale.

(a) As the rotating mirror is turned back and forth slightly by hand, the
image of the slit on the glass scale does not move. Explain how this
can be true.

The mirror is now set to rotate with a frequency of rotation set to 440
Hz using a tuning fork.

(b) How does the image of the slit on the glass scale change as the mirror
rotates rapidly?

(c) What is the intensity of the image relative to the original intensity Iy
when the mirror is not rotating?

(d) Derive a formula for the speed of light in terms of the parameters given
in the problem and a quantity measurable on the glass scale.

Glass Scale
SLight Slit half silvered
Fixed Mirror ource 1@ mirror : .
1 ' (rotating

I v ¥ mirror
lens

2f f
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Solution
- Light from the rotating mirror that passes through the lens is returned to the rotating mirror going
in exactly the opposite direction from which it came. Since the rotating mirror is one foc h

from the lens, light with different angles from the rotating rpirroris-made pazellel by the lens, &

- Tetiums parallel from the fixed mirror, and is focused back to the point from which it came on the
rotalmg-mirrar,

a) Because of this property, the image of the slit remains fixed as the rotating mirror is turned by Q
hand. ~

b) If the mirror rotates rapidly, all the light passing through the lens is still focussed onto a single
image on the glass scale, however, the image is displaced because the rotating mirrors angle changes
between the first and second reflections from that mirror. The size of the displacement can be 2
calculated. The image also becomes less intense because light is only returned when the rotating
mirror is pointing at the lens.

c¢) The new intensity is %Io. (It could be twice that if the rotating mirror is two sided.) QL

d) During the time the light is traveling to and from the fixed mirror, the rotating mirror’s angle
changes. This light reflected back toward the scale, changes by twice the angle of the mirror. We 3
will compute the displacement § at the glass scale. :

0= wt

=

(&

5 = 20f

5 - 24m(440)(10)* _ 3.3175 x 10622
C [

The displacement should be about 1 cm.

We can then calculate the speed of light in terms of the displacement.

3.3175 x 1062
C =
\ 8




CODE NUMBER: SCORE: 10

#10 (SECTION 5)

PROBLEM: In this question, you are asked to make order of magnitude es-
timates. Do any three of the four parts (any three of parts a, b, c, or d),
stating which three you want graded. You may need the numbers:
Boltzmann constant (k = 1.4 x 102 J/K),

mass of a proton (m, = 1.7 x 107%7 kg),

Avogadro’s number (N = 1 gm/m,),

electron charge (e = 1.6 x 10719 Q),

permittivity of free space (eg = 8.8 x 10712 F/m),

permeability of free space (1o = 47 x 10~7 H/m),

the energy in an electron volt (eV = 1.6 x 10719 J),

and the intensity of the solar radiation incident at the upper atmosphere of
the earth (I = 1 kW/m?).

(a) Using a simple microscopic picture, estimate Young’s modulus for
steel. Recall that the modulus is defined as

stress _ (F/A)

strain  (AL/L)

Strain I+ L 1
AL/L '
Stress L O

HF——F/aA
= |
AL

F/a——

(b) Estimate the collision frequency for the molecules in the air of this
room.

(c) Estimate the number of solar neutrinos that pass through your body
during the course of this exam.

(d) In an amusing demonstration, a frog is floated (suspended against
gravity) in the diverging magnetic field at the upper end of a vertical
solenoid. Given that the field strength is about 10T and the bore of
the solenoid is about 3 inches, estimate the magnetic susceptibility of
the frog (i.e., Xy where M = xmH). Be sure to state the sign of ym,
that is, state whether the frog is diamagnetic or paramagnetic.
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INSTRUCTIONS
PART Ii
PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the exam.
The proctor of the exam will attempt to clarify example questions if you are
uncertain about them. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. ( E.g. Section 1: problem 1 or
problem 2.) Partial credit will be given for partial solutions for seven (7)
questions only.

Circle the seven problems you wish to be graded:

Section: §1 §2 §3 §4 §5

Problems:.

(Crcleyour 11 12 (13 14|15 16|17 18|19 20

seven choices)

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens & pencils,
calculator and food items. Please deposit your belongings (books, notes,
backpacks, etc.) in the corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:
Write the problem number and your ID number on each sheet:
Write only on one side of the paper;

Start each problem on the attached examination sheets:

If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is written
on each of your exam sheets.

aooo

*Colored scratch paper is provided and'may be discarded when the
examination is over.

At the conclusion of the examination period, please staple each problem together
and place completed exams on the table, separated in stacks according to
problem numbers.
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#11 (SECTION 1)

PROBLEM: A particle of mass m moves in the central potential

k C
U('l")=—-;+w.

In this problem you may assume C > 0.

(2) Find and sketch the effective potential U_g(r).

(b) Find the equation for the shape of bound orbits, r(¢), in the orbital
plane. Hint: You might consider deriving a differential equation for the

quantity s = 1/7. ‘

(c) Find the precession A¢ in the angle of periapsis (i.e. the distance of
closest approach to the force center) over one radial cycle.
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GRADUATE MECHANICS

A particle of mass m moves in the central potential

In this problem you may assume C > 0.
(a) Find and sketch the effective potential U g(r).

(b) Find the equation for the shape of bound orbits, r(#), in the orbital
plane. Hint: You might consider deriving a differential equation for the
quantity s = 1/r.

i

(c) Find the precession A¢ in the angle of periapsis (i.e. the distance of
closest approach to the force center) over one radial cycle.

SOLUTION

(a) The effective potential is

Ug(r)=U(r)+ T

k2 C
L +m

r 2mir?

where £ = mr?4 is the angular momentum. The sketch follows.

(b) We know that total energy is conserved, with

= ’;%2 — ks + %(€2+m0)32 ,

where s = 1/r. Conservation of angular momentum allows us to write
la_4b4d
s2dt mdg’

hence

52 ds 2 1 2 2

1
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We can integrate this directly, or, what is somewhat simpler, differentiate
to obtain

d% + 1+mC’ S_mk

de? Iz o2

This is instantly recognized as the equation of a harmonic oscillator under
a constant force, with ¢ playing the role of time. The solution is

3(¢) = s5(1 — ecos B¢) ,

where sy = mk/(¢® + mC) and 8 = /1 + B Thus,

T,
7‘(45):% )

Y

with ro = sg! = (¢2 + mC’)/mk. For the orbit to be bound, |¢| < 1.

(c) We have chosen the zero of ¢ to correspond to apoapsis, In fact, apoapsis
occurs for f¢ = 27nn and periapsis for B¢ = 2n(n + %) The difference
between angles at successive periapses is,

Ap=¢,. —b,—2r=2r("1-1).

If C > 0 then § > 1 and A¢ < 0, i.e. periapsis lags from one orbit to the
next.
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#12 (SECTION 1)

A mass m is affixed at position z = 0 to a string, as shown in the figure
below. The tension in the string is 7 and its linear mass density is pu. As
the mass moves, it scrapes along a surface parallel to the string, hence it
experiences a frictional force —ymu, where v is the (vertical) velocity of the
mass, in addition to the forces it is subjected to from the string. A pulse of
shape f(z — ct) is incident from the left at large negative values of the time
t, where c is the speed of wave propagation in the string.

incident transmitted
B —_—
-’_4__\0,"/_\/
reflected

(a) Find the transmission coefficient t(k) as a function of wavevector. You
may find it convenient to define Q = v/c and ¢ = m/2u.

(b) An incident pulse (i.e. a wavepacket) is made up of Fourier compo-
nents with wavevectors & < Q. If the incident pulse shape is described by
Yin(2,t) = f(z — ct), what is the reflected pulse Yot (T, )7
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GRADUATE MECHANICS

A mass m is affixed at position £ = 0 to a string, as shown in the figure
below. The tension in the string is 7 and its linear mass density is u. As
the mass moves, it scrapes along a surface parallel to the string, hence it
experiences & frictional force —ymw, where v is the (vertical) velocity of the
mass, in addition to the forces it is subjected to from the string. A pulse of
shape f(z — ct) is incident from the left at large negative values of the time
t, where c is the speed of wave propagation in the string.

incident transmitted
_

+——— m

reflected

(2) Find the transmission coefficient t(k) as a function of wavevector. You
may find it convenient to define Q = v/c and { = m/2u.

(b) An incident pulse (i.e. a wavepacket) is made up of Fourier compo-
nents with wavevectors k < Q. If the incident pulse shape is described by
Yin(Z,t) = f(z — ct), what is the reflected pulse y_(z, t)?

SOLUTION

(a) Let y(z,t) be the vertical displacement of the string at position z and
time t. For z # 0, we have that the string obeys the Helmholtz equation,

iy 2 82 Hx?
where ¢2 = 7/u. At z =0, Newton’s second law gives
m(0,1) + ymy(0,¢) = 7y (0F,2) — 74/ (07, 1),

where prime denotes derivative with respect to z and dot denotes derivative
with respect to t. The equations of motion are linear, hence the solution on
either side of £ = 0 may be written as a Fourier integral. We therefore may
write a general solution as a linear combination of functions of the following
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form:
eik(z—ct) + I‘(k) e—ik(z+ct) z<0

y(mv t) =
t(k) etk(z—ct) z>0.

Continuity at z = 0 requires
1+r(k) =t(k) .
The second equation comes from Mr. Newton:
—(mc*k? + iymek) t(k) = ikr[t(k) — 1+ r(k)] .

Substituting r =t — 1 into the second equation and solving for t(k) yields

-1
_ yme m_k _ 1
t(k)_[1+ 2T z2;1,] T 14+ Q¢ —ik(’

where Q = v/c and { =m/2p.

(b)- The reflection coefficient is

r(k) = t(k) — 1 = ——26 — K¢

1+Q¢ —ik¢
Assuming k < Q, we have r(k) ~ —ﬁé—(, so the reflected pulse is
Q¢

yref(m,t):fl+ch(z+ct).

Thus, the reflected pulse is an inverted, attenuated version of the incident
\pulse. :
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#13 (SECTION 2)

PROBLEM: An infinite slab of copper occupies the region z = —d to z = +d,
where (z,7, z) is a rectangular coordinate system. The slab carries the os-
cillating current/length K(t) = Re §Ko e ™*, where Kj is a constant. Note
that the current density in the slab, Jy(z,t) = Re J,(z) e~*?, is not uniform
and not specified; only the integral fj; dz Jy(z) = K is specified. Deter-
mine the magnetic field in all of space and determine the current density
Jy(z) in the slab. You may assume that the conductivity of copper is much
larger than the oscillation frequency (i.e., o > w ).
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#14 (SECTION 2)

PROBLEM: In a particular inertial frame there is a uniform electric field E =
Ey(2 + 9) and a uniform magnetic field B = Eoj.

(a) Is there an inertial frame where either the electric field or the magnetic
field vanishes? If so, find that frame. If not, state why not.

(b) Is there a frame where the electric and magnetic field are parallel? If
so, find that frame. It not, state why not. You may need the equations
for transformation of the fields:

_ _ _ V xB _ VXE
E“=E||’B”=B||7EL=7[EL+—C_L] ,B_L='7|:BJ__ - L}

where || and L to the direction of the relative velocity between the
frames, V.
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4, . In a particular inertial frame there is a uniform electric field E = E¢(® + §) and a
uniform magnetic field B = Egy. .

a.  Is there an inertial frame where either the electric field or the magnetic field
vanishes? If so, find that frame. If not, state why not. '

nO mm E ? t: jFD
&h‘\j‘ l-g_. E' . o

lrm

(=

: N
b. . Is there.a frame where the electric and magnetic‘ field are parallel? If so, find
that frame. If not, state- why not.
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#15 (SECTION 3)

PROBLEM : An isotropic ferromagnet may be described by the Heisenberg
model
H=-J» 6i-d—H Y 0
(i.) i
where &; is a 3d unit vector describing the direction of spin on site ¢ of a
simple cubic lattice, J > 0 is the strength of the ferromagnetic interaction,
H is the external magnetic field, and (4, j) denotes nearest neighbor sites.

(a) Apply the Weiss mean-field approximation, i.e., replace the spin vari-
able for each of the 6 nearest neighbors of a site by the thermodynamic
average, m = (), and write down the mean-field Hamiltonian Hmr
in terms of 7.

(b) Using the mean-field Hamiltonian, derive a self-consistent equation of
state describing how the average magnetization m = || depends on
H at temperature T'. [Hint: You may assume that 17 is in the direction
of H.]

(¢) Find the critical temperature T, in the absence of external field, i.e.,
for H =0.
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Solution:

(a) The average magnetization per site 7 = (6,.) is clearly independent of the location of the site
i. The mean-field approximation amounts to replacing the spin & ; neighboring site i by the

average magnetization. Summing over the 6 nearest neighbors of each site in a simple cubic
lattice, we have

HW=—6J26i-ﬁ1—ﬁ-26i. |

(b) Assuming that 77 points in the direction of the external field A , then the spin variable
G, can be represented simply by the angle 6 it makes with H . Denoting the magnitude of m

and H by m and H respectively, the mean-field Hamiltonian becomes

\\

HMF'= —6]2mcos€i - HE cos@, .

The mean-field partition function is then Z,,, = f d3,..dG, e = ZV where N is the number

of sites in the system, and
Z, = [d62rsing "M

=3 1+ - (eJm+h _ e—(Jm+h))
m

where J = 6BJ and h= BH .

The mean-magnetization is then

1 eJ m+h e—(J m+h)

. +
- + dma+h —(Jm+h) "
Jm+h e -e

m= ianl =

oh

(c) In the vic}hity of T, (and with h = 0), we expect the magnetization to be small. Expanding
the self-consistent equation above for m, we find

2 4
1+(Jm) +(Jm)

1 20 41t dm 3

- + — e = +0m)

Jm Jm_{_(Jm) +(Jm) 3
3! 5!

ni ==

Critical point occurs when the self-consistent equation begins to admit multiple solutions, i.e.,
when spontaneous symmetry breaking appears. This occurs at J =3 or T.=2J/k,.



CODE NUMBER: SCORE: 16

#16 (SECTION 3)

PROBLEM : A three-dimensional system of spin-0 bosonic particles obeys the
dispersion relation

h?k?
e(k)=A+ o

The quantity A is the formation energy and m the mass of each particle.

These particles are not conserved — they may be created and destroyed at

the boundaries of their environment. (A possible example: vacancies in a

crystalline lattice.) The Hamiltonian for these particles is

H = Z k)nk+——N2

where 71, is the number operator for particles with wavevector k, N= Yok
is the total number of particles, V is the volume of the system, and U is an
interaction potential.

(a) Treat the interaction term within mean field theory. That is, define
N = (N) + 6N, where (N) is the thermodynamic average of N, and derive
the mean field self-consistency equation for the number density p = (N)/V
by neglecting terms quadratic in the fluctuations §N. Show that the mean
field Hamiltonian is

Hyue = —3VURPR+ > [e(k ) + Up] A
k

(b) Derive the criterion for Bose condensation. Show that this requires
A < 0. For A = —|Ay|, find an equation relating T¢, U, and A,
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GRADUATE STATISTICAL MECHANICS

A three-dimensional system of spin-0 bosonic particles obeys the dispersion
relation -
hek
=A .
e(k) + o

The quantity A is the formation energy and m the mass of each particle.
These particles are not conserved — they may be created and destroyed at
the boundaries of their environment. (A possible example: vacancies in a
crystalline lattice.) The Hamiltonian for these particles is

U .
H:ZE(k)‘ka'FWNz,
k

~ ' .
where 7, is the number operator for particles with wavevector k, N = Dok Ty
is the total number of particles, V is the volume of the system, and U is an
interaction potential.

(a) Treat the interaction term within mean field theory. That is, define
N = (N) + 6N, where (N) is the thermodynamic average of N, and derive
the mean field self-consistency equation for the number density p = (N)/V
by neglecting terms quadratic in the fluctuations §N. Show that the mean
field Hamiltonian is

Hye = —1VUR2+ 3 [s(k) + Up] A )
k

(b) Derive the criterion for Bose condensation. Show that this requires
A <0. For A = —|A,|, find an equation relating T;, U, and A,.
\

SOLUTION
(a) We write
N? = () + 68)?"
= (N)2 + 2(N) 6N + (6N)2
=—(N)2 +2(N) N + (5N)2 .
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We drop the last term, (6N)2, because it is quadratic in the fluctuations.
This is the mean field assumption. The Hamiltonian now becomes

e = ~ VU + 3 [e(k) + Up] P
k

where p = (N)/V is the number density. This, the dispersion is effectively
changed, to
27,2

12k
Ek)=5—+A+Up.

The average number of particles in state lk) is given by the Bose function,

. 1
) = o [E(k)/ksT] =1

Summing over all k states, and using
1 d%
22 / (2m)?
we obtain

p= ()
k

o0
D(w)
elw+A+Up)/kpT _

+ d% 1
Po | @m)3 hPkeamiaT o(ATUA EoT — 1
Pyt

dw

0

Wl\l‘ere Po = (fp_o)/V is the number density of the k = 0 state alone,
i.e.the condensate density. When there is no condensate, p, = 0. The
above equation is the mean field equation. It is equivalent to demanding
OF/0p = 0, i.e. to extremizing the free energy with respect to the mean
field parameter p. Though it is not a reduired part of the solution, we have
here written this relation in terms of the density of states D(w), defined
according to "

o= (o= 8) -
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(b) Bose condensation requires
A+Up=0,

which clearly requires A < 0. Writing A = —|A|, we have, just at T =T,

_ 1A _ [ d% L
PI) =37 = | Gr)E wwe amiets - 1’

since py(Tc) = 0. This relation determines T,. Although this is as far as you
were asked to go, it is useful to note that the integral can be done and an
explicit expression obtained for T¢:

. Aol _ [ S
, o= dw D(w) ) e9w/ksTe
0 i=1
— (kaTC)3/2 C(Q)
~\ 2nK? 2
where ¢(£) = 3°° ; n~¢ is the Riemann zeta function. Thus,

T _27rh2< Ag )2/3
¢ mks \((HU .
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#17 (SECTION 4)

PROBLEM: An electron is initially spin up along the 2-axis. This state is then
rotated by an angle @ about an axis &, where & = ad = az3 + oyl + a;Z
and o = (& - &)V2.

(a) What is the probability that the electron is still spin up along the
original Z-axis? Spin down along this axis?

(b) Now suppose that an electron initially spin down along the 3-axis is
sequentially rotated first by o, about Z, then by «, about §, and
finally by o, about Z. What is the probability that the electron is
spin down along the original 2-axis?
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CODE NUMBER: SCORE: 18

#18 (SECTION 4)

PROBLEM: A spinless charged particle (charge €) in free space moves under
the influence of a uniform magnetic field B. Determine the energy levels for
this particle.



Qv ondu. Roodde— | opD /8 St
A SPin-Nagy c\ah.be.A. ferdiNe L‘*mgé )
i Frea .s?ac,¢v mMov S \I‘;Mﬁ 3;\-\& ;.“.p\wl,‘,c,
N mepeide VA B
Vi) avd diewss Yha dvengy Meads foo
INie perYivie. Wiiy. dadios saw @aniobles N0y

Bra Cb s oy L.,._)*ﬁ—‘;c G A O3V arwisA S aXe '}\-L H‘-—-. \'\'Du\a"
Nea% Pl . Then WeldL dna Bwiwar logy 1w Spe tdien

ﬂ)v\aA\ak St Q/\\q Qs 4 3“."“1\-‘ ‘)’0_ \;& C.\n “2— %)
v > A '
e, B =B Lb
)L‘L\,:’ Q h\\, ‘l.-D“_ Vo\‘-\.o.})ﬂ.\“é C?k\f;‘dw}t ot v ‘A—°" &"J""‘}lt«’ “re
B, Ay D E_‘;'ﬁ»‘: “ B}:> A "‘Q,,.b Ay
‘ . A . )
s b B e e ,‘3* (h- o A5 > N
. v . 'x_ ‘-" o ‘ ‘ g‘- __"j-"'f'l"‘.-}t."f
My, Aedily vmia Vs B Nes Q \ x ‘o -A"\-
. |

\733\' k? /"ﬁ‘,B
:) 5>Q) “#W:\’)“’\awllr“ ‘.\-\ A& P~ J ob )’FLJ‘( el A &I*\~ﬂ- Y%\ L5 i-‘
' A g P
. M= z.sv.(_ Y__i Q’X* T.%. ‘
e b L, ETYE L Te sy Lnoany
| o T s iy 26
ek and dy T, S NYs R S
D 9, Ty oy w2 - &?.2%% =
: \/ —— - l{/
| \*’ \"5\ ' /

%: Nk & Nirsomic 0sccl\udon

',0“~ ;E"l$“\~9u“-i *\U—. eg%\ < {l < ‘Go:,q, k-E.ﬁ A—.ﬂ_»\v, :\/

WI(’

S - \\a-ﬁ‘,\—;'c\.;b_h Vs weomms OF S0 nse.

. . T _ i
,‘q"’*l"@j Q\}QV\\‘L\-‘LJ; ~ ~ £ = __} 3 Q"_Z*’ &"‘«\a\,’) u‘%\-\""‘:Q)\))—)"“
. "/ r M o 7



CODE NUMBER: SCORE: 19

#19 (SECTION 5)

PROBLEM: A nucleus has a ground state with angular momentum quantum
number Jg = 0 and energy Ep, a first excited state with excitation energy
above the ground state F; — Eg = 0.1 MeV and angular momentum J; = 1,
and a second excited state with excitation energy Fy; — Eg = 1.0MeV and
angular momentum Jo = 2. In the laboratory at zero temperature this
nucleus is known to have a mean lifetime (inverse decay rate) of 10”s. The
first excited state is known to decay 10° times as fast as the ground state,
while the second excited state decays 10!! times faster than does the ground
state.

What is the lifetime of this nucleus inside a massive star at temperature
kT = 0.1MeV? (Assume that thermal equilibrium obtains and that the
populations of the states of the nucleus are thermal.)
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#19 (SECTION 5)

PROBLEM: A nucleus has a ground state with angular momentum quantum
number Jo = 0 and energy Ej, a first excited state with excitation energy
above the ground state E; — Eg = 0.1 MeV and angular momentum J; = 1,
and a second excited state with excitation energy E3 — Eg = 1.0MeV and
angular momentum J; = 2. In the laboratory at zero temperature this
nucleus is known to have a mean lifetime (inverse decay rate) of 107s. The
first excited state is known to decay 10° times as fast as the ground state,
while the second excited state decays 10! times faster than does the ground
state.

What is the lifetime of this nucleus inside a massive star at temperature
kT = 0.1MeV? (Assume that thermal equilibrium obtains and that the
populations of the states of the nucleus are thermal.)
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#19 (SECTION 5)

PROBLEM: A nucleus has a ground state with angular momentum quantum
number Jo = 0 and energy Ey, a first excited state with excitation energy
above the ground state Ey — Eg = 0.1 MeV and angular momentum J; = 1,
and a second excited state with excitation energy Ey — Eg = 1.0MeV and
angular momentum J; = 2. In the laboratory at zero temperature this
nucleus is known to have a mean lifetime (inverse decay rate) of 107 3. The
first excited state is known to decay 10 times as fast as the ground state,
while the second excited state decays 10! times faster than does the ground
state.

What is the lifetime of this nucleus inside a massive star at temperature
kT = 0.1MeV? (Assume that thermal equilibrium obtains and that the
populations of the states of the nucleus are thermal.)
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CODE NUMBER: SCORE: 20

#20 (SECTION 5)

PROBLEM: Evaluate the integral

I(z)=/1 4 Sice

1.’13—t

using contour integration methods for real z, |z| > 1. Make sure your result
applies both for positive and for negative z.
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