
INSTRUCTIONS

PART I : PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. ( E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks, etc.) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.
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#1 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM: A rod of length L and mass M is suspended from a pivot. The
rod is struck midway along its length by a lump of clay of mass m moving
horizontally at speed v. The clay sticks to the rod. Find an expression for
the minimum speed v that will result in the rod’s making a complete circle
rather than swinging like a pendulum.



CODE NUMBER: ————– SCORE: ———— 2

SOLUTION:

Assume that during the collision of the clay with the rod, the angular mo-
mentum about the pivot is conserved. Before the collision (when only the
clay is moving) the angular momentum is mv(L/2) and just afterwards it is
Iω0. Here,

I = ML2/3 + m(L/2)2

is the rotational inertia of the system, after the collision, about the pivot
and ω0 is the angular speed when the system is at the lowest point of its
subsequent swing. If the pivot is frictionless, the mechanical energy will be
conserved during this swing, or

K0 + U0 = K + U .

The center of mass is at the center of the rod (since the clay is stuck there)
and so the maximum change in potential energy, when the rod is at the
highest point of its swing, is (m + M)gL. If there is also kinetic energy at
this point, the rod will make a complete circle, i.e., Ktop ≥ 0 implies

K0 ≥ Utop − U0

or

Iω2
0/2 ≥ (m + M)gL.

Since ω0 = mvL/(2I), from above, this condition becomes

ω2
0 = [mvL/(2I)]2 ≥ 2(m + M)gL/I,

or

v2 ≥ (8I/L2)(m + M)gL/m2 = (m/4 + M/3)8(m + M)gL/m2.
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#2 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM: A meter stick that lies parallel to the x axis moves in the y direc-
tion of the lab frame with relativistic speed, vy. A rocket moves along the
x axis of the lab frame with relativistic speed, vx. In the rocket frame the
meter stick appears tilted at an angle θ with respect to the x′ axis. Find θ
by the following steps.

(a) Let the center of the meter stick pass point x = y = x′ = y′ = 0 at time
t = t′ = 0.
(b) Where and when does the right end of the meter stick cross the x axis
as observed in the lab frame?

(c) Where and when does this event occur in the rocket frame?

(d) To find the tilt angle in the rocket frame you need x′ and y′ at t′ = 0.
To find these calculate the x and y components of the stick speed in the
rocket frame.
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#3 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM:

Consider a classical electron of charge e and mass me (and no spin) moving
with speed v in a circular orbit of radius R around a positive charge q, as
shown in the figure. A uniform magnetic field B in direction perpendicular
to the plane of the orbit is then turned on.
(a) Find the change in the speed of this electron, ∆v, when the magnetic
field is turned on. Assume R is unchanged. Does this electron speed up or
slow down?
(b) Assuming there are n such electrons per unit volume, give an expression
for the magnetic susceptibility per unit volume. Assume all orbits are per-
pendicular to the magnetic field, and ignore the difference between B and
H.
(c) Give an argument for why it is reasonable to ignore any change in R
when the magnetic field is applied as long as ∆v/v << 1.
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SOLUTION:

(a) As B is turned on, an azimuthal electric field is generated by Faraday’s
law

~∇× ~E = −1

c

∂ ~B

∂t
∮

~E · ~dl = −1

c

∂

∂t

∫

~B · ~dS

∴ E = −R

2c

∂B

∂t

For azimuthal speed of electron

me
∂v

∂t
= eE = −eR

2c

∂B

∂t
==> ∆v = − eR

2mec
B

The electron speeds up for the motion shown in the figure (Lenz’s law).

(b) Kinetic energy of electron changes by

∆E =
1

2
me[(v + ∆v)2 − v2] = me∆v +

1

2
me(∆v)2

and magnetic susceptibility is

χ = −n
∂2∆E

∂B2
= − ne2

4mec2
R2

(c) In the absence of applied magnetic field the force balance is

mev
2

R
=

qe

R2

and with magnetic field

me(v + ∆v)2

R
=

qe

R2
− e

c
(v + ∆v)B

Since
2me∆v

R
= −e

c
vB

the force balance equation is satisfied to linear order in B with no change
in R.
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#4 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM: Consider a lossless metallic waveguide with dimensions 1 cm x̂ ×
2 cm ŷ × 5 cm ẑ. Electromagnetic waves propagating along the ẑ axis of the
waveguide with only x̂ and ŷ electric field components are called the TE
modes. The lowest frequency TE mode which can propagate in a waveguide
is the TE10 mode. It has the form Ey ∝ eiβz sin kyy where i =

√
−1,

β =
√

k2 − k2
y is the propagation constant, and k is the wavenumber.

(a) Determine the cutoff frequency fc in GHz, the lowest frequency for which
the TE10 mode will propagate without loss along the ẑ-axis. (Use the bound-
ary conditions on Ey to determine the allowable ky.)

(b) Suppose a microwave generator that produces Pin = 1kW at f = 1GHz
is attached to one end of the waveguide. Examine whether or not it can cook
an egg positioned at the other end. Assume that you need 100 W of power
to cook the egg and that the power absorbed by the egg is proportional
to the square of the electric field: P = κE2

y . Here κ is a proportionality
constant and Ey is the average electric field within this egg. Assume that
κ = 10−6 W × m2/V2. What is the total microwave power Pout leaving the
waveguide at the other end?
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SOLUTION:

(a) The cutoff frequency fc corresponds to β = 0, i.e., kc = ky. The allowed
ky is determined by the boundary condition Ey = 0 at y = 0 and y = a ≡
2 cm. Therefore, ky = π/a and the cutoff frequency is

fc = kcc/(2π) = c/(2a) = 7.5 GHz .

(b) The frequency of 1GHz is below the cutoff. The wave’s amplitude/electric
field decays as ∼ exp(iβL) with:

β =
√

(2πf/c)2 − (π/a)2

=
√

[(2π × 109 s−1/(3 × 108 m/s)]2 − (π/0.02 m)2

= 155.7im−1.

At the output the field will be attenuated by the factor of

e−LImβ = 4.1 × 10−4.

The power goes as the square of the field, and so

Pout = Pin exp(−2LImβ) = 1.7 × 10−4 W .

Since Pout is far below the power needed to cook the egg, we do not need
to calculate the power absorption by the egg explicitly. It is clear that the
answer should be negative.
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#5 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: A long molecule is composed of N chemical units (”monomers”),
each of which can be in one of two states of different lengths a and b, were
b > a. The whole molecule therefore can be between Na and Nb in length.
The energy of a monomer in the longer state is ǫ larger than the energy of a
monomer in the shorter state. You may consider the thermodynamic limit
N ≫ 1 to simplify the calculations. The following mathematical result may
be useful: lnN ! ≈ N lnN − N for N ≫ 1.

(a) At a given temperature T , find the average number of monomers in each
state, and hence the equilibrium length of the entire molecule.

(b) Now, suppose that the molecule is forced to be a fixed length L, where
Na < L < Nb, so that (L − Na)/(b − a) of its monomers are in the
stretched (length b) state. Find the internal energy E(N, L) and the en-
tropy S(N, T, L).

(c) From (b) calculate the Helmholtz free energy F (N, T, L), and finally the
force needed to extend the molecule to length L at fixed temperature T .
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SOLUTION:

(a) Since monomers are independent, we can compute the partition function
for one monomer, Z1 = 1 + e−βǫ, and then compute

ZN = (1 + e−βǫ)N .

Since the energy is just proportional to the number of elements in state b,
we can calculate

〈NB〉 = −∂ ln Z
∂βǫ = N

eβǫ+1

Note that 〈NA〉 = N − 〈NB〉, so

〈L〉 = a〈NA〉 + b〈NB〉 = Na + N(b−a)
eβǫ+1

(b) If we force length to be L, this means we force NB = (L−Na)/(b− a).
The energy is E = NBǫ, and the entropy is just the log of the number of

ways to choose NB of the monomers to be in state b, S = kB ln

(

N
NB

)

.

So, S = kB ln N !
NB !(N−NB)! , which can be written in the large N and NB limit

as

S = kB

[

NB ln N
NB

+ (N − NB) ln N
N−NB

]

so

F = E − TS = NBǫ + kBT
[

NB ln NB

N + (N − NB) ln N−NB

N

]

where NB/N = (L − Na)/ [N(b − a)] and where 1 − NB/N = (Nb −
L)/ [N(b − a)].

(c) Force is given by L derivative of free energy at fixed temperature:

f =
(

∂F
∂L

)

T
=

(

∂NB

∂L

) (

∂F
∂NB

)

f = ǫ+kBT [ln NB/N−ln(1−NB/N)]
b−a =

ǫ+kBT ln L−Na
Nb−L

b−a

Note that force diverges to infinite tension if L −→ Nb. Force also diverges
to infinite compression if L −→ Na.
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#6 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM:

A container is divided into two equal chambers, each of the same volume
V . One chamber contains N0 molecules of an ideal gas at temperature T ,
and the other chamber is completely empty, a perfect vacuum. A small
hole, of area A, is punched in the wall separating the two chambers, and gas
begins to leak into the empty chamber. The temperature of the gas is kept
constant.

(a) Given that the flux of molecules moving in the +x direction can be
written as Φ = nv/4, where n is the number of molecules per volume.
Write down an expression for the rate at which molecules leave the
filled chamber at the instant the hole is punched (t = 0). Next apply
the same consideration to the other side of the chamber and obtain
an equation describing the number of molecules N(t) in the initially
filled chamber, for all time t > 0 after the hole is punched. Solve the
equation and express your result in terms of A, V, N0, and v.

(b) As the gas redistributes itself between the two chambers, the entropy
of the system increases. Calculate the difference between the entropy
of the final state with both chambers holding N0/2 molecules, and the
initial state when all the molecules were in one chamber.

[Note: The following approximation may be used for simplification:
lnN ! ≈ N lnN − N for N ≫ 1.]
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SOLUTION:

(a) At the instant the hole is punched, the density of molecule is n = N0/V
and the rate of molecules exiting the chamber is Φ · A = 1

4vAN0/V .

At a later time t > 0, if there are N molecules in the first chamber,
there are N0 − N molecules in the other. Then, the outflux from the
first chamber is Φout = 1

4vN(t)/V while the influx from the other
chamber is Φin = 1

4v(N0 − N(t))/V . We thus arrive at the following
differential equation for N(t):

dN

dt
= [Φin − Φout] · A =

vA

2V

(

N0

2
− N

)

.

This equation can be solved by direct integration:

dN

N − N0

2

= −vA

2V
dt.

After integrating, ln(N − N0

2 ) = −vAt/(2V ) + const.

Including the initial condition N(t = 0) = N0, we finally obtain

N(t) =
N0

2

(

1 + e−vAt/(2V )
)

.

(b) ∆S = Sf −Si = k lnwf −k lnwi = k ln(wf/wi), where w is the number
of ways to put N particles in one box and N0−N particles in the other
box. Clearly, wi = 1. wf = N0!/[(N0/2)!]2. Then

∆S = k ln
(

N0!/[(N0/2)!]2
)

= k[lnN0! − 2 ln(N0/2)!].

Applying Stirling’s formula, lnN ! ≈ N lnN − N , we obtain,

∆S ≈ k[N0 lnN0 − N0 ln(N0/2)] = N0k ln 2.
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#7 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM:

Consider an electron in an hydrogen atom in a state with quantum numbers
n, l, m. Ignore electron spin for this problem. Assume a uniform magnetic
field ~B in the z direction is slowly turned on.
(a) Show that a possible magnetic vector potential is ~A = ( ~B × ~r)/2.
(b) Show that the wavefunction for this electron in the presence of the
magnetic field is the same as in the absence of the magnetic field to lowest
order in ~A. Use that ~p → ~p − (e/c) ~A.
(c) Estimate the order of magnitude of B for which the change in the
wavefunction is no longer negligible.
(d) Assuming there are na atoms per unit volume in the same state, find an
expression for the magnetic susceptibility per unit volume χ of this system.
Ignore the difference between B and H.
Hint: χ = −∂2E/∂B2, with E the energy per unit volume.



CODE NUMBER: ————– SCORE: ———— 14

SOLUTION:

(a) For ~A = ( ~B × ~r)/2 and ~B = Bẑ,

~A =
B

2
(−yx̂ + xŷ)

~∇× ~A = ẑ(
∂Ay

∂x
− ∂Ax

∂y
) = Bẑ

(b) In the Hamiltonian ~p → ~p − (e/c) ~A, hence

p2

2me
→ 1

2me
(~p − e

c
~A)2 =

p2

2me
− e

mec
~A · ~p +

e2

2mec2
A2

where we used that ~∇ · ~A = 0 to commute ~A and ~p. Now

~A · ~p =
1

2
( ~B × ~r) · ~p =

1

2
(~r × ~p) · ~B =

1

2
~L · ~B =

1

2
BLz

The wavefunction with magnetic quantum number m is an eigenfunction of
Lz, hence it is an eigenfunction of ~A ·~p. Therefore, the wavefunction doesn’t
change provided we ignore the term proportional to A2.

(c) An estimate of the error can be obtained by taking the ratio of the A2

term to the A term in the above equation, yielding

eA

pc
=

eBr

2pc
∼ eBr2

2~c

taking p ∼ ~/r. For r ∼ 10−10m this yields eA/pc ∼ 0.76 × 10−5B/Tesla
Therefore, this term is negligible unless B ∼ 105T . Laboratory fields are
typically a few T .

(d) In lowest order perturbation theory, we take the expectation value of
the Hamiltonian with the unperturbed wave function |Ψ > to compute the
energy E. Only the term proportional to A2 contributes to the second
derivative of E with respect to B, hence

χ = − < Ψ|na
∂2

∂B2
(

e2

2mec2
A2)|Ψ >= − nae

2

4mec2
< Ψ|r2|Ψ >
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#8 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Use the variational method with a Gaussian trial function, Ψ(x) =
exp (−ax2/2) to estimate the ground state energy of a particle in the poten-
tial V (x) = λx6.

Hint: the integral
∫

∞

−∞
dxxn exp (−ax2) = Γ

(

n+1
2

)

/a
n+1

2 , where Γ is the
Gamma function, Γ(1/2) =

√
π.
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#9 : UNDERGRADUATE MATH METHODS

PROBLEM: Consider the transcendental equation

Aue−ε2u2

= 1 ,

where A ≫ 1 and ε ≪ 1 are known. Find all real solution(s) for u to the
leading order in small parameters ε and 1/A.
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SOLUTION:

First of all, let us get rid of one of the parameters by rescaling. Define
v = εu, then

ve−v2

= δ ≡ ε/A .

We need to find v to the leading-order in δ ≪ 1. Clearly, v must be positive.
The expression of the left-hand side of the last equation is zero both at v = 0
and at v = ∞ and has a single maximum in between, at vmax =

√
2/2. The

magnitude of the maximum ∼ 1 is much larger than δ; hence, there are
exactly two solutions, 0 < v1 < vmax and v2 > vmax. To find v1 ≪ 1, it is
permissible to use Taylor expansion

v1 = δev2
1 = δ(1 + v2

1 + . . .) .

To the leading order, v1 = δ, and so

u1 ≃ 1/A .

Next, to get v2, we write v2 =
√

ln(v2/δ) . Since v2 is large, we cannot
expand in v2. However, we can separate the large logarithm:

v2 =

(

ln
1

δ
+ ln v2

)1/2

.

For large v2 we have v2 ≫
√

ln v2. Therefore, from the two terms in the
parenthesis it is the first one that is dominant. This yields

v2 ≃
(

ln
1

δ

)1/2

,

and so

u2 ≃ 1

ε

(

ln
A

ε

)1/2

.
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#10 : UNDERGRADUATE GENERAL PHYSICS

PROBLEM: Carbon-14 is produced in the atmosphere when cosmic ray neu-
trons react with nitrogen atoms in air: 14N + 1n → 14C+1H. The carbon-14
produced in this reaction forms carbon dioxide, CO2, a component of air.
Atmospheric CO2, has approximately one atom of carbon-14 per every 1012

atoms of carbon-12. A living tree takes in carbon dioxide with the same
14C/12C ratio as the atmosphere. When a tree dies, it stops intaking all
carbon. The radioactive decay of the carbon in the tree starts to change the
ratio of 14C/12C ratio. By measuring how much the ratio is lowered, it is
possible to estimate the elapsed time since the tree died, or the age of the
tree. The decay of carbon-14 has a half-life of 5720 years and proceeds as
14C →14 N + e−.

(a) Express the 14C/12C ratio as a function of time.

(b) UCSD operates a high altitude research station in the White Mountains
of East-Central California at an altitude of 14,000 feet. Some of the oldest
living organisms on earth, called Bristlecone Pine Trees, live there. A dead
Bristlecone Pine Tree sample there was found to have a 14C/12C ratio of
r = 0.795 times that found in plants living today. How long ago did the tree
die?

(c) What if you find out that your estimate of the half-life of 14C is uncertain
by X years and that the ratio r is uncertain by Y %. Using the laws of error
propagation, how should you express the age of the dead Bristlecone Pine
Tree now?
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SOLUTION:

(a) The number of carbon-14 nuclei remaining after time t in terms of the
initial amount N(0) is given by

N(t) = N(0)e−t/τ .

Therefore
r = N(t)/N(0) = e−t/τ .

(b) The expression for the age is

t = −τ ln r .

The time constant τ in these equations is related to the half-life as follows:

τ1/2 ≡ t(r = 1/2) = τ ln 2 .

In our case τ = 5720/ ln 2 = 8254 years. Substituting this τ and r = 0.795
into the above equation for t, we get

t = τ1/2

∣

∣

∣

∣

ln r

ln 2

∣

∣

∣

∣

= 1893 yr.

(c) The error in t due to errors in r and τ is:

δt =

√

(

δτ1/2
∂t

∂τ1/2

)2
+

(

δr
∂t

∂r

)2

=
1

ln 2

√

(X ln r)2 +
( Y

100
τ1/2

)2

=

√

(

0.331 X
)2

+
(

57.2 Y
)2

. (1)
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#11 : GRADUATE CLASSICAL MECHANICS

PROBLEM: A simple pendulum of length L and massM in gravity is subjected
to a rapidly-oscillating horizontal force, F (t) = F0 cos Ωt, where Ω2 ≫ g/L.
By averaging over the rapid oscillations find a condition on F0 such that
θ = 0 becomes an unstable equilibrium, and obtain the new equilibrium
angle θ.

θ
F(t)

g

M

L
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SOLUTION:

The solution can be found using Hamiltonian averaging methods, or by
averaging the equations of motion. We will use the second method.

θ satisfies
ML2θ̈ = F0L cos θ cos Ωt−MgL sin θ.

Break θ into a slowly varying part θ and a rapidly-varying part θ1:

θ = θ + θ1

ML2θ̈ +ML2θ̈1 = F0L cos(θ + θ1) cos Ωt−MgL sin(θ + θ1)

=⇒ θ1 ≈ − F0

MLΩ2 cos θ cos Ωt.

Use this to compute θ by averaging the equation of motion, dropping small
terms:

ML2θ̈ ≈ −F0L sin θ〈θ1 cos Ωt〉 −MgL sin θ

=
F 2

0

2MΩ2
sin θ cos θ −MgL sin θ

= − sin θ

(
MgL− F 2

0

2MΩ2
cos θ

)

=⇒ θ = 0 is unstable if
F 2

0

2MΩ2 > MgL

New equilibrium at cos θ =
2M2gLΩ2

F 2
0

.
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#12 : GRADUATE CLASSICAL MECHANICS

PROBLEM: (a) Consider a particle in potential V (x). Derive the eikonal
equation for the Schrodinger equation for this problem. What is the physical
significance of the eikonal phase?

(b) Derive the Lagrange equations for a ray trajectory for sound waves which
obey Fermat’s Principle. Note that Fermat’s Principle states that a ray will
traverse a path of minimum time of propagation. Assume propagation is in
2D, with speed Cs = Cs(y) (i.e. y is depth).

(c) Derive the Hamiltonian for this problem and write the Hamilton equa-
tions of motion.
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SOLUTION:

(a.) −~
∂ψ
∂t = −~

2

2m ∇2ψ + V ψ

ψ = ψ∂e
iφ/~

↑
eikonal phase→ fast variation

⇒ ∂φ
∂t = 1

2m(∇φ)2 + V (x)

but if re-write φ = S

∂S
∂t = (∇S)2

2m + V (x)

then recognize Hamilton-Jacobi equation for classical problem!

(b.) T =
x
2∫

x
1

dℓ
Cs(x)

n(y)

Cs(x) = c0
n(x)

→ ref. speed
→ index of refraction

x1,2 = (x 1

2

, y 1

2

)

so T =
x
2∫

x
1

dℓ n(x) =
x
2∫

x
1

dx(1 + ( dydx)2)1/2 n(y)

δT =
x
2∫

x
1

dx{∂n∂y (1 + y′2)1/2δy + n(y)y′

(1+y′2)1/2
δy′}

=
x
2∫

x
1

dx[(1 + y′2)1/2 ∂n∂y − d
dx( n(y)y′

(1+y′2)1/2
)]δy
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+( n(y)y′

(1+y′2)′2
)δy

∣∣∣∣
x
2

x
1

δy = 0 on end points

so δT = 0 ⇒

d
dx( n(y)y′

(1+y′2)1/2
) − (1 + y′2)1/2 ∂n∂y = 0

is Lagrange equation for ray.

(c.) p = ∂L
∂q̇ , H = pq̇(q, p) − L

here

⇒ p = ∂L
∂y′ = n(y)y′

(1+y′2)1/2

p2(1 + y′2) = n(y)2y′2

[p2 − n(y)2]y′2 = −p2

y′ = [n(y)2 − p2]−1/2p

H = p2[n(y)2 − p2]−1/2 − n(y)( 1+p2

n(y)2−p2
)1/2

EOM: dp
dt = −∂H

∂y

dy
dt = ∂H

∂p
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#13 : GRADUATE ELECTROMAGNETISM

PROBLEM: A thin dielectric slab, with dielectric constant ε and thickness d,
is inserted a distance x≫ d between two parallel square isolated conducting
plates of side L ≫ d, separated by d. The plates have equal and opposite
charge ±Q. Find the electrostatic force on the slab as a function of x.

Q

-Q

x

d
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SOLUTION

The free charge on the plates arranges itself so that the charge per unit area
in the region adjacent to the slab (region 1) is σ1, and the charge per unit
area in the region far from the slab (region 2) is σ2 (far being a distance
≫ d). Since the plates are isolated and L≫ d, σ1 and σ2 satisfy

σ1Lx+ σ2L(L− x) = Q.

In region 2, the electric field between the plates is given by the vacuum
relation, E2 = 4πσ2. In region 1, the electric field is reduced by the dielectric
E1 = 4πσ1/ε. However, the potential between the plates must be constant
in x, so

dE1 = dE2 =⇒ σ1 = εσ2

=⇒ σ2 =
Q

Lxε+ L(L− x)
, σ1 =

εQ
Lxε+ L(L− x)

.

The electrostatic energy of the system is

WE = Ldx
E1D1

8π
+ Ld(L− x)

E2D2

8π

= Ldx
2πσ2

1

ε
+ Ld(L− x)2πσ2

2

WE =
2πdQ2

Lxε+ L(L− x)
.

So, the force on the slab is

Fx = − ∂WE

∂x

)

Q

Fx =
2πdLQ2(ε− 1)

[Lx(ε− 1) + L2]2
.
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#14 : GRADUATE ELECTROMAGNETISM

PROBLEM: Consider a Lorentzian scalar electrodynamics with Lagrangian
Density.

L = 1/2∇iφ∇iφ− µ2φ2/2.

The field-particle interaction action is, for a single charge, given by:

Sfp = −g
c

∫
dsφ.

Here φ is a coupling co-efficient and ds is the infinitesimal interval.

(a) Calculate the force that one stationary point charge exerts on another.
Assume the two charges are at x = (±a, 0, 0). You may leave your answer
in terms of the potential φ.

(b) Now calculate the potential of interaction, explicitly.
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SOLUTION:

S = −mc
∫
ds− g

c

∫
ds φ

ds = cdt′ = cdt
√

1 − v2/c2

⇒ S =
∫
dt(−mc2

√
1 − v2/c2)[1 + gφ

mc2
]

L = −mc2
√

1 − v2/c2[1 + gφ
mc2

]

For dynamics:

d
dt(

∂L
∂v ) = ∂L

∂x

⇒ d
dt(

mc2v/c2√
1−v2/c2

[1 + gφ
mc2

]) =
−mc2

√
1−v2/c2∗

(g∇φ/mc2)

∴
d
dt(

mv√
1−v2/c2

[1 + gφ
mc2

]) = −mc2
√

1 − v2/c2 (g∇φ/mc2)

⇒ [1 + gφ
mc2

] ddt(
mv√

1−v2/c2
) + mv√

1−v2/c2
g
mc2

(dφdt )

= −mc2
√

1 − v2/c2(g∇φ/mc2)

For stationary charges, fields: p = mv/
√

1 − v2/c2

[1 + gφ/mc2] ddtp = −g∇φ,

Thus, have F = d
dtp = −g∇φ/[1 + gφ/mc2]

so

F12 = −g2∇φ1/[1 + gφ1/mc
2]
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Now, for potential:

S = 1
c

∫
dΩ[12∇iφ∇iφ− µ2φ2

2 − gρφ],

where ρ ≡ charge density

δS = 1
c

∫
dΩ[2 ∂L

∂∇iφ
δ(∇iφ) + ∂L

∂φ δφ]

= 1
c

∫
dΩ[−2∇i(

∂L
∂∇iφ

) + ∂L
∂φ ]δφ, where end point contributions vanish.

⇒ −∇i(∇iφ) − µ2φ− gρ = 0

− 1
c2

∂2

∂t2
φ+ ∇2φ− µ2φ = gρ

For stationary point charge: ∂2φ/∂t2 = 0

⇒ ∇2φ− µ2φ = gρ

= gδ(r − ax̂)

so φ1 = g exp(−µ|r − ax̂|)/|(r − ax̂)|

F12 = −g∇φ1/[1 + gφ1/mc
2]

∣∣∣∣
r=−ax̂
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#15 : GRADUATE STATISTICAL MECHANICS

PROBLEM: A classical gas of non-interacting atoms is in thermal equilibrium
at temperature T in a container of volume V and surface area A. The
potential energy of the atoms in the bulk is zero. Atoms adsorbed on the
surface have a potential energy V = −Ea and behave as an ideal two-
dimensional gas.

Find an analytic expression for the surface density σ(n, T ) ≡ Nsurface/A in
terms of the bulk density n ≡ Nbulk/V and the temperature. Be sure to
“correct Boltzmann counting”.

The following mathematical results may be useful.

ln(N !) ≈ N lnN −N

1√
2π

∫
∞

−∞

exp(−x2/2) dx = 1
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SOLUTION:

First do the bulk gas.

Use Nbulk = N for brevity,
and let the energy of a particle be ǫ = (p2

x + p2
y + p2

z)/(2m).

Zbulk(N,T, V ) =
V N

N !h3N

[∫
∞

−∞

e−p
2
x/(2mkT ) dpx

]3N

=
(2πmkT )

3N
2 V N

N !h3N
.

Use ln(N !) ≈ N lnN −N , we get

Fbulk = −kT lnZbulk ≈ −NkT ln

[
(2πmkT )

3

2

h3

V

N

]
−NkT.

µbulk =
∂Fbulk

∂N

∣∣∣∣
T,V

= −kT ln

[
(2πmkT )

3

2

h3

V

N

]
.

Next do the surface.

Use Nsurface = N ′ for brevity,
and let the energy of a particle be ǫ = −E0 + (p2

x + p2
y)/(2m).

Zsurface(N
′, T, A) =

AN
′

N ′!h2N ′

{
eE0/kT

[∫
∞

−∞

e−p
2
x/(2mkT ) dpx

]2
}N ′

=
1

N ′!

[
eE0/kT (2πmkT )A

h2

]N ′

.

Fsurface = −kT lnZsurface ≈ −N ′kT ln

[
2πmkT

h2

A

N ′
eE0/kT

]
−N ′kT.

µsurface =
∂Fsurface

∂N ′

∣∣∣∣
T,V

= −kT ln

[
2πmkT

h2

A

N ′
eE0/kT

]
.
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Now put the bulk and surface pieces in equilibrium.

Set µbulk = µsurface at equilibrium.
Let n ≡ Nbulk/V and σ ≡ Nsurface/A be the bulk and surface density,
respectively.

ln

[
(2πmkT )

3

2

h3

V

Nbulk

]
= ln

[
2πmkT

h2

A

Nsurface
eE0/kT

]
.

√
2πmkT

h
n =

1

σ
eE0/kT .

σ(n, T ) = n eE0/kT h√
2πmkT

.
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#16 : GRADUATE STATISTICAL MECHANICS

PROBLEM: Consider the statistical equilibrium of a white dwarf star, for
which the motion of the electrons in the star must be treated as relativistic.
Using the approximation

ε = (p2c2 +m2c4)1/2 −mc2 ≃ pc−mc2 + (m2c3/2p) (p≫ mc),

evaluate the pressure of the electron gas and obtain thereby the ”mass-radius
relationship” for such stars — thus establishing the existence of a limiting
mass M0 that signals the gravitational collapse of the star.

In determining M0, do not worry about exact numerical factors — just focus
on the main characters of the play!
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#17 :GRADUATE QUANTUM MECHANICS

PROBLEM: Two identical spin 1
2 fermions of mass M are in a cubical box of

length L. They interact via the attractive potential

V1(~r1, ~r2) = −ǫL3δ3(~r1 − ~r2),

where ǫ is small and positive. Treat the problem non-relativisitically, treat-
ing V1 as a perturbation, and use sin θ = Im(eiθ) to do the integral.

(a) Compute the energy eigenvector and eigenvalue of the groundstate, work-
ing to O(ǫ). Include the spin degrees of freedom.

(b) What is the total spin S of the groundstate, and the first excited state,
and their total degeneracies (don’t forget to include that of the spin)?

(c) What is the total spin and total degeneracy of the first excited state if
the potential were instead repulsive (ǫ < 0)?
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SOLUTION:

(a) The basis states for a particle in a box are

φ~n(~r) = (
2

L
)3/2 sin(n1πx/L) sin(n2πy/L) sin(n3πz/L).

For two identical particles, the spatial part of the wavefunction is φ~n(~r1)φ~m(~r2)±
φ~m(~r1)φ~n(~r2), with energy E = (~n2 + ~m2)/2mL2. The spin part is the
antisymmetric state |S = 0〉, or the symmetric state |S = 1〉. The full
wavefunction must be antisymmetric, since they’re fermions. Finally, the
perturbation shifts the energy by

∆E =

∫
d3 ~r1d

3 ~r2ψ(~r1, ~r2)
∗V (~r1, ~r2)ψ(~r1, ~r2) = −ǫL3

∫
d3~r|ψ(~r, ~r)|2,

which is non-zero for the spatially symmetric wavefunction, and zero for the
spatially antisymmetric.

The groundstate is wavefunction is φ111(~r1)φ111(~r2) ⊗ |S = 0〉. The pertur-
bation shifts the energy by

∆E = −ǫL3(
2

L
)6(

L

π
)3

(∫ π

0
dx

(
eiθ − e−iθ

2i

)4
)3

= −27

8
ǫ

So the groundstate energy to O(ǫ) is

E0 =
3π2

~
2

ML2
− 27

8
ǫ.

(b) The groundstate has S = 0, and is not degenerate.

The first excited state is ~n = (2, 1, 1) and permutations. Since the interaction
is attractive, the symmetric spatial state has lower energy, so the spin part
must be antisymmetric, i.e. S = 0. The degeneracy is 3.

(c) If the interaction were repulsive, the spatially antisymmetric state would
have lower energy. So the spin is symmetric. The degeneracy is thus the
product of the spatial and spin degeneracies: 3 · 3 = 9.
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#18 : GRADUATE QUANTUM MECHANICS

PROBLEM: Consider a particle moving in the one-dimensional infinitely deep
potential well. Let V (x) = 0 for 0 < x < a, and V (x) = ∞ everywhere

else. The eigenstates of the Hamiltonian H0 = p2

2m + V (x) are φn(x) =√
2
asin(nπxa ) with eigenvalues En = n2π2

~
2

2ma2 . Assume that at t=0 you put

an obstacle at the bottom of the well which is represented by the potential
barrier W (x) = W0 for a

4 < x < 3a
4 and W (x) = 0 everywhere else. The

time-dependent total Hamiltonian is H = H0 + h(t) where h = 0 for t < 0
and h = W (x) for t ≥ 0.

Answer the following question:

If at t=0 the particle is in the state φ3(x), what is the probability of finding
it in the state φ1(x) at time t, if W0 ≪ E1?

Useful relation:

2sin(z1)sin(z2) = cos(z1 − z2) − cos(z1 + z2)
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SOLUTION:

The problem governed by H0 is already solved since h = 0 for t < 0. The
probability P (Ek, t) of finding the particle in the eigenstate |k > of H0 at
time t, i.e. the probability of measuring the eigenvalue Ek is given by

P (Ek, t) =
1

~2

∣∣∣∣
∫ t

0
exp(

i

~
(Ek − Em)t′)〈k|h(t′)|m〉dt′

∣∣∣∣
2

,

with m = 3 in our case. This is the result of first order time-dependent
perturbation theory where P (Ek, t) is the transition probability from |m〉 to
|k〉.

If h(t) is independent of time for t ≥ 0, i.e. if a constant small term is added
to the Hamiltonian at t = 0, then

P (Ek, t) =
1

~2

∣∣∣〈k|W |m〉
∣∣∣
2
·
∣∣∣
exp( i

~
(Ek − Em)t) − 1
i
~
(Ek − Em)

∣∣∣
2

=
1

~2

∣∣∣〈k|W |m〉
∣∣∣
2
·
∣∣∣
e−

i
~
Emt − e−

i
~
Ekt

i
~
(Ek − Em)

∣∣∣
2

=
|〈k|W |m〉|2
(Ek − Em)2

·
∣∣∣2sin(

1

2

Ek − Em
ℏ

t)
∣∣∣
2

=
|〈k|W |m〉|2
(ℏωkm)2

· 4sin2(
1

2
ωkmt) .

Here ωkm ≡ Ek−Em

ℏ
and we have used |eiθ − eiφ| = 2sin(1

2(θ − φ)) .

When applied to our problem we therefore have

P (E1, t) =
|〈φ1|W |φ3〉|2

(ℏω13)2
· 4sin2(

1

2
ω13t) ,

E1 − E3 = −8π2
ℏ

2

2ma2
, ω13 = − 8π2

ℏ

2ma2
.
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We use the following integrals:

〈φ1|W |φ3〉 =

∫ 3a
4

a
4

dxφ∗1(x)W0φ3(x)

=
2W0

a

∫ 3a
4

a
4

dxsin
πx

a
sin

3πx

a

=
2W0

π

∫ 3π
4

π
4

dx′sin(x′)sin(3x′)

=
2W0

π

(
sin(2x′)

4
− sin(4x′)

8

)x′= 3π
4

x′=π
4

= −W0

π
.

Therefore we find

P (E1, t) =
4m2a4W 2

0

64π6ℏ4
· 4sin2(

2π2
ℏ

ma2
t)

=
m2a4W 2

0

4π6ℏ4
· sin2(

2π2
ℏ

ma2
t) ,

where P (E1, t) oscillates in time.
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#19 : GRADUATE MATH METHODS

PROBLEM: Evaluate by contour integration

∫
∞

0

x1/2dx

1 + x2

showing the contour and all poles and branch cuts.
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SOLUTION:

The poles are at z = ±i, and the squareroot branch cut can be taken along
the positive real axis. Integrate along the entire real axis, and close the
contour at infinity in the upper half plane, getting the residue at z = i.
This gives

∮
z1/2dz

1 + z2
=

2πi
√
i

2i
=
π(1 + i)√

2
= (1 + i)

∫
∞

0

x1/2dx

x2 + 1
,

so the desired integral is

∫
∞

0

x1/2dx

1 + x2
=

π√
2
.
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#20 : GRADUATE GENERAL PHYSICS

PROBLEM:

An elastic ball of radius a collides with a rigid wall and rebounds. Estimate
the collision time τ assuming that the initial velocity of the ball v is much
smaller than the speed of sound c in the material of which it is made. Neglect
any dissipation, friction, or rotation.
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SOLUTION:

In the course of the collision the front of the ball becomes flattened, which
causes a restoring elastic force. The collision time is related to the average
value F of this force and the initial momentum p of the ball:

Fτ = 2p =
8π

3
ρva3,

where ρ is the density of the ball. The force is the product of the contact
area πr2, the Young modulus Y , and the elastic strain ε:

F ∼ πr2Y ε .

The contact radius r can be crudely estimated as the radius of the circle
obtained by flattening the ball to the depth u ∼ vτ :

r ∼ (2au)1/2 ∼ (2avτ)1/2.

(A rigorous treatment of the contact between a sphere and a rigid wall,
which gives the missing numerical coefficient, can be found in the elasticity
theory books.) The elastic deformation is concentrated in a region of linear
size r; therefore, ε ∼ u/r. Putting everything together and solving for τ , we
obtain

τ ∼ a

(
ρ2

Y 2v

)1/5

=
a

c

( c
v

)1/5
.

Our analysis was quasistatic. In particular, we neglected the fact that the
collision results in creation of sound waves bouncing inside the ball. How-
ever, our τ is much longer than the roundtrip time 4a/c of the sound waves.
Hence, the effect of such dynamic vibrations should effectively average out,
especially if a small dissipation is present, as is usually the case.


