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#1 : UNDERGRADUATE MECHANICS

PROBLEM: Consider an Atwood machine with a massless pulley and two
masses, m and M, which are attached at opposite ends to a string of fixed
length that is hung over the pulley. For this Atwood machine, the center of
the pulley is supported by a spring of spring constant k.

(a) Find the Lagrangian and the resulting equations of motion.

(b) Find the equilibrium position of the pulley and its frequency of oscil-
lations. Consider your result in the limits m = M and discuss. Hint:
using the method of Langrange multipliers significantly reduces the
complexity of this problem.

#1 : UNDERGRADUATE MECHANICS

SOLUTION:

(a) We will assume that the center of the pulley is a distance z measured
in the downward direction from equilibrium. The distance from the center of
the pulley for M is z again measured in the downward direction. For mass
m the distance from the center of the pulley is L — z where L is a constant
related to the length of the string. The kinetic energy of the two masses is

1 | N
T'= §M (z—f—:z:) +§m (z—:n) .
The potential energy of the two masses and the spring is
1
U=-Mg(z+z)—mg(z—2z)+ §kz2,
so that the Lagrangian is

ﬁle (é+i)2+%m(é—i)2+Mg(z+I)+mg(z—a:)—%kzg.

2
The x equation of motion is
oL  doL
0z ~  dtyg

(M—m)g = M(3+&)+m(i—2) = (M+m)i+(M-m)i
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The z equation of motion is

9L _ doL
8z dbg:
(M +m)g—kz = 1vf(é+é&)+m(2—5})=(M+m)£+(n4—m):}3

(b) Solving for z from the z equation

(M+m)z = (M—m)(g—‘z)
R

Substituting this into the z equation

2

(M+m)’g—(M-m)’g—(M+m)kz = (M+m)’z—(M—-m)*2
4Mmg— (M +m)kz = 4Mmz
4Mmg_kz 4Mmé
M+m M+m

The new position of equilibrium occurs when z = 0 and is

Xy 4Mm g
T M4 mk
The frequency of oscillation is
R k(M+m) _k_ e _ Mm
~ 4Mm 4y bP=M+m

In the limit M = m the frequency of oscillation reduces to w? = k/2m, which
is exactly what you would expect as neither mass is accelerating due to the
gravitational field.

Alternate Solution




(a) The solution to this problem is much easier to obtain with the use of
Lagrange multipliers. Let the distance to each mass be given by zs and z,,
respectively while the distance to the center of the suspended pulley is y. All
of these distances are measured positive in the downward direction relative
to some stationary position, e.g the center of the pulley when there are no
masses attached to the string. The distance along the string from the from
the center of the pulley to mass M is simply ) — y and correspondingly
the equilivalent distance to m is x,, — y. Since the length of the string is
unchanged, the constraint equation is

T —Y+ Tm—Y=2TyM+Tyn— 2y =L =const.

Hence the modified Lagrangian is simply

1

£=2

el S 1
Mz, + -2-m$2 + my gz + megrs — Ekyz + A(zp + zm — 2y),

where A is a Lagrange mulitiplier. The three Lagrange equations of motion
take the simple form

Mzy = Mg+ )\, mz,, =mg+ )\, and —ky—2A=0.
These are subject, of course, to the constraint zy+z,—2y = L — Zp+Tm =
2.
(b) Summing the equations for zp; and z,, we find

Ty +Tm = 29+ A/M+A/m

& k i 1
O = g
) g 21/(M+m)
S k

where again . = Mm/ (M + m). The equilibrium position is found when
y = 0, or y, = 4ug/k. The frequency of oscillations about this point is
w? = k/4p. When M = m then the frequency of oscillation is found from
w? = k/2m which is what you would expect as neither mass is accelerating
due to the gravitational field.




#2 : UNDERGRADUATE MECHANICS

PROBLEM: Two particles (with reduced mass i) that are orbiting each other
interact via a potential energy U = 1kr?, where k > 0 and r is the distance
between them.

(a) Find the equilibrium distance ry at which the two particles can circle
each other at a constant distance of separation as a function of the
angular momentum L.

(b) Determine if this is a position of stable equilibrium.

(c) Without solving an orbit equation, determine if those orbits are closed.

#2 : UNDERGRADUATE MECHANICS SOLUTION:

(a) The effective potential energy is

1
Ueff (T‘) = Ek'f'g -+ ﬂﬁ

The position(s) of equilibrium are found from

dUeff (To) e e -5
dr s

2

o

Q ”k

(b) The second derivative of the effective potential at equilibrium is

U, (ro 2 A s
Uff(f‘”)zk_JrgL :k+3_“_‘[“""g=4k.
dr? purd prd

Since k > 0, the second derivative of the potential at equilibrium is greater
than zero and this is a position of stable equilibrium.




(c) From the equation of motion

2 dUeyy (1)
A= dr

For small displacements from equilibrium, » = r,+4dr, the equation of motion
becomes
_dUEJ'f (ro) o d*Ueys (ro)

HOT == o 12 or = —4kor,

;‘Lé.;"-i-ﬁlké?“ = 0

so that the frequency of small radial oscillations about r = r, is w? = 4k/p.

(d) The angular frequency for a circular orbit is

&
Cowr?

From the solution for 7, in part (a), 4 = L?/uk, therefore
« Lnfuk
¢= —T’u = VEk/p.
7
This is to be compared with the radial frequency (for a near circular orbit)

of
w=2/k/p.

We see that in this limit the relative distance between the particles goes
through exactly two cycles for each full orbit. Hence the orbit is closed.




#3 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM: A thin wire carries constant current / into one plate of a charging
capacitor, and another thin wire carries constant current I out of the other
plate. The capacitor plates are disks of radius a and separation w < a
(so edge effects can safely be neglected). The region between the plates has
€ X €, [t =~ [, but does have a non-negligible, constant conductivity o.
Note: The capacitor is not an ideal capacitor, since the material between the
plates is not a perfect insulator.

(a) Supposing that the charges are uniformly distributed on the plates, find
a differential equation for the charge Q(t) on the plates, and solve it
for Q(t), taking Q(0) = 0.

(b) Find the electric and magnetic fields in the gap. Approximate the
electric field as just that due to the charged plates. When computing
the magnetic field, include all sourcing contributions.

#3 : UNDERGRADUATE ELECTROMAGNETISM

SOLUTION: Choose coordinates so that I = IZ in the wire. With charge
Q(t), the electric field inside is E = L) > The current density inside is

Ta“en
then J = oE = :GQQ:O z. Integrating this over an arbitrary surface of constant
z, between the plates, gives the current flowing from one plate to another:
Lri= | Jda = ZoQ(t) /€o. Charge conservation implies that the charge on
the plate satisfies
dQ(t)

o
— =T — I =1 — —Q,
dt fl EQQ

with I the constant current flowing into the plate from the wire. We can
solve this differential equation:

Q) = % (1= et

The magnetic field inside satisfies B = B(s)g’g, and Ampere gives

OE., o 5 Y 52
5 )= E(Q(t)o + e0Q(t)) (E) - #of?,

B(s)2ms = ;Lgfda(Jz + €




so inside the plates, s < a, we have

v pol's ~
Ble)= 2ma?”

Outside the plates we have B= pol /2ms, as usual for a wire.




#4 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM: A sphere of radius R has volume charge density p = Kr", for some
constants K and n. The region r > R is filled with a conductor (all the way
to infinity).

(a) Find the volume charge density p in the region r > R, inside the
conductor, and the surface charge density at r = R.

(b) Find the electric field E everywhere, i.e. for r < R and for r > R.

(c) Find the potential ¢ everywhere, taking ¢ to vanish at infinity.

(d) How much energy is stored in this system?

#4 : UNDERGRADUATE ELECTROMAGNETISM

SOLUTION: a) p = 0 in a conductor, and since E = 0, the total charge
enclosed by a gaussian surface in a conductor is zero, so the surface charge
at 7 = R cancels that of the charged sphere:

KRn+1
n+3"’

L Sre i
oc=— R2/0 Kr'4redrd) = —

47

which is uniformly (by the spherical symmetry) distributed on the inner
surface of the conductor.

b) By symmetry E() = E(r)7. Gauss’ law applied to a gaussian surface
sphere of radius r < R gives
= = Qenci(r) Kert ~

E(r) = o T = s 3)60?* for r < R.

Again E=0forr> R, inside the conductor.
¢) Writing the above E as —V, we obtain

(T.n+2 o Rn+2)

Py for: r< R

¢=-K

and ¢ =0 for r > R.




U v B4V 27I'K2.R2n *
: _/ 2[) i 60(2?1 5)(?’1. 3)

10




#5 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: A particle of mass m is in the ground state of a harmonic oscillator
with spring constant k = mw? At ¢t = 0, the spring constant changes
suddenly to k' = A*mw?, where ) is a constant. Find the probability that
the oscillator remains in its ground state.

#5 : UNDERGRADUATE QUANTUM MECHANICS

SOLUTION: Solution: The oscillator changes from frequency w to Aw. In
terms of wavefunctions, the initial wavefunction is

mw\ /4 mus?
s = )
The new ground state wavefunction is
1/4
mAUJ _m)\u:z
Yo = (—ﬂﬁ) e = (2)

The probability is

2_2\/X
LA

p = o) =| [ as i@

1],




#7 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: AConsider two identical blocks of material, both with heat capacity
C, which is independent of temperature. The “hot” one is initially at a
temperature 7. The “cold” one is initially at temperature T, with T <
Ty. The two blocks act as the hot and cold “reservoirs” used to run a cyclic
engine. The engine runs until both blocks reach a common temperature T7.
The entire process is reversible.

(a) What is the temperature T;?
(b) How much work does the engine do?
(¢) Compute the entropy change AS for each of the two blocks, and for

the engine, in this process.

#7 : UNDERGRADUATE STATISTICAL MECHANICS

SOLUTION: The entropy change of each block is AS = [ dQ/T = CIn(T}/T;).
The entropy change of the engine is zero (cyclic) and the total entropy change
is zero (reversible). Implies

(a) T_'r =/ T};Tc.
(b) W = C(TH — Tf) — C(Tf — TC) = C(TH + T — 24/ THTC).
(¢) ASg = 1CIn(Ty/To) = —ASH, ASeng = 0.
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#8 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: Suppose that a certain system of N particles has for its number
of available states a function Q(N,U,V) = Q(N,UV?), i.e. the number of
states available to the system depends on the internal energy U, and the
volume V, only via the combined variable UV?, with b some constant.

(a) The system initially has volume V; = 2m® and energy U; = 100J. It
undergoes an isentropic expansion to volume V; = 4m?. What is the
final energy U;?

(b) Derive the expression for the pressure of this gas, as a function of U
and V (and the constant b).

#8 : UNDERGRADUATE STATISTICAL MECHANICS

SOLUTION: (a) Isentropic means AS = 0, so AQ = 0, so UV} = UV, so
U_f = 2-%100J.

(b) dU = TdS — PdV + pdN, so P = —(0U/dV)s . Constant S means
UV? is a constant, so dUV® + bUV®1dV =0, so P = bU/V.

14




#9 : UNDERGRADUATE OTHER

PROBLEM: A helicopter can hover when the power output of its engine is P. A
second helicopter is an exact copy of the first one but its linear dimensions are
twice larger. What power output is needed to enable this second helicopter
to hover? Hint: Use your intuition to decide which physical parameters (e.g.,
density of air, density of helicopter, etc.) of the system are important and
then apply a dimensional analysis.

#9 : UNDERGRADUATE OTHER

SOLUTION: It is reasonable to assume that P depends on the weight of the
helicopter mg, its linear size L, and the density of air p, as a certain power-

law:
P x (mg)® x LP x p".

The combination of exponents that gives the correct dimension of P is unique:
P o (mg)*/2L~1p1/2,

Since mg o< L*, this entails
P LR = L1,

Therefore, the required power is 27/2P = 8/2 P.
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#11 : GRADUATE MECHANICS

PROBLEM: A thin hoop of radius R whose mass M is distributed uniformly
around the perimeter of the hoop is free to roll along a horizontal track
without slipping. Attached to the inside of this hoop is a bead of mass m
which is free to slide without friction around the hoop. The whole system is
in a uniform gravitational acceleration g.

(a) Find the Lagrangian for this system.

(b) Find the Lagrangian equations of motion and any possible equilibrium
positions for the bead. Determine if these positions are stable or un-
stable.

(¢) Find the frequency of small amplitude oscillations of the bead about
all possible positions of stable equilibrium. Consider your results in the
limit M > m and discuss.

#11 : GRADUATE MECHANICS

SOLUTION:

(a) The generalized coordinate that we will use for the hoop is X, the
distance to the center of the hoop. Since it is a horizontal track there are no
potential energy considerations for the hoop. The kinetic energy of the hoop
is
1 coede S
“MX + -1
9 + 7 w
The momentum of inertia for this hoop is I = M R?. from the no slip condi-

Thoop ==

tion X = Rw. Hence the kinetic energy for the hoop is
1 v 2 . 2
Thaop=§(2M)X =MX .

The generalized coordinate for the bead is the angle ¢ which is measured
from a horizontal axis passing through the center of the hoop. The z and Y
coordinates of the bead are

z=X+ Rsing and y=R(1l—cosg).
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The velocities are
z=X+ Rcosqbq.é and y= Rsinqbqﬁ.

Hence the kinetic energy of the bead is
1 ] o e
o I — Em (X +2Rcos p X ¢ + R*p ) -
The potential energy of the bead is

U =mgy = mgR (1 — cos ¢)

Combining these terms to find the Lagrangian yields

o2 1 - o2
£= %(2M+m)X +5m (2RCOS¢X¢+R2¢ ) —mgR (1 —cos¢).

(b) The EOM for X is

dor _ ot
dt3X aX
% (2M +m) X +chos¢5¢] = (2M +m) X —mRsin¢g¢p + mRcospp = 0.

Note that this expression is basically the conservation of momentum in the
z direction.

The EOM for ¢ is

dor _ o
dt 6c;'5 | ¢
dit [mR cos gzﬁX + mquiﬁ = —mgRsin¢ — mRsin qqub
—mAR sin qﬁq&X + mR cos rj})% + mRzé;" = —mgRsin¢ — mRsin qqub
mHR cos d))% - mqu.ﬁ = —mgRsing@.

18



Substituting for X from the X equation yields

mhR sin qbq; — mAR cos ééﬁ

Fa o :
oM Th + R*¢ = —gRsin ¢.

Rcos ¢

At equilibrium we have qﬁ = gb = 0 and
—gRsing=0—-¢=0o0r =

are positions of equilibrium. First we will consider ¢ = 7. To do this we
consider small deviations from ¢ = 7, i.e. ¢ = 7 + € and only keep linear
terms in e. With these restrictions the EOM for ¢ becomes
m 54 i 2M 3
————R%+ R%=——R%= ;
M e+ R T € = gRe
This EOM is not stable as the force is not a restoring force. Now we will

consider small deviations from ¢ = 0, i.e. ¢ = € and only keep linear terms
in €. With these restrictions the EOM for ¢ becomes

o m g- 9 2M 20 _
(_—2M+m)RE+RE__—_2M+mRE_ gRe.

Now the gravitational forces act as restoring forces and ¢ = 0 is a position
of stable equilibrium.

(c) Rewriting the equation for small deviations from stable equilibrium
we find

_ _2M+4+myg :
B 2M R’
so that the frequency of small amplitude oscillations is
ate MMy
2M R’
In the limit M >> m we find that
3. J
w B’

which is the frequency for a simple pendulum. That is what you would expect
in that limit as the oscillations of the bead would not impact the extremely
massive hoop.

19



#12 : GRADUATE MECHANICS

PROBLEM: Functions A(p, q) of coordinates q and their conjugate momentum
p generate motions through phase space (q, p) via Poisson bracket, by the
equation

dB(p,q)

ra {B(p,q),A(p,q)}rs,

where 7 is a scalar label along such a motion, B(p, q) is an arbitrary function
on phase space, and {} pp denotes the Poisson bracket.

Show explicitly that the components of angular momentum L(p,q) =
q X p generate rotations in phase space. Show this for p and for q. Show
that scalar functions in phase space are unchanged by the Poisson bracket
operation with L.

#12 : GRADUATE MECHANICS

SOLUTION:

20




Angular momentum is to be used as the generator of motions in phase space. Let’s answer all
the questions using the third component of angular momentum. The answer is similar for L; and
for Ls.

L3 = qip2 — ¢2 — p1, and this generates motion in p,q space via

d—Bf};’—‘” = {Ls, B(p,)}

{g2p1 — q1p2, B(p,q)},

dB(pq) dB(pq) dB(pq) dB(pq)
_ _ 24 1
L™ B U B ta dq (1)

Now we take B(q, p) separately as the components of q = (g1, g2, ¢3):

day
dn
dgy
dn = 751

dqs .
E = i) (2)

— +q2

The solution to these is

@i(n) = qcos(n) + gasin(n)
q@2(n = gacos(n) — q1sin(n)
q3(n = qa, (3)

where the values ¢, g2, g3 on the right hand side are those at n = 0.

This is clearly a rotation of the vector q around the z-axis by an angle 7.

The same operations show that the components of p are also rotated by Lj and that the other
components of Ly, Ly, L3 rotate vectors.

Now take B(q,p) = q: P = qip1 + ¢2p2 + ¢aps, and rotate this using L to find 0.

Any vector made out of p and q only can be written as p(A(q?, p% p-q) + q(B(q? p%p - q),
and A and B are functions of the rotational scalars. This acts like a vector under rotations and
these are generated by the components of L.



#13 : GRADUATE ELECTROMAGNETISM

PROBLEM: In a region of space there is a uniform magnetic field B = Byx.
An uncharged solid copper sphere of radius R moves with a velocity v = v,¥
through the magnetic field. Compute the electric field everywhere (inside
and outside the sphere), as seen in the lab frame. Also, find the surface
charge density on the surface of the sphere. Take vy < c.

#13 : GRADUATE ELECTROMAGNETISM

SOLUTION:

21




#13 GRADUATE ELECTROMAGNETISM

SOLUTION:
(2) !
. = Vx B
Inside sphere, F = q(E + =4
- Il s ) W sk .1 = : A
SE,=——VxB=——y,B yxX=—v,Bz2=—v,B,cos@-F——v,B,sinf-6.
¢ c c c c

®, = 'IEi" -dr =-—lv030rcos.‘9.
c
Outside sphere, @, (r) satisfies V@, = 0. Expand potential in Legendre polynomials:

o, (0= Z[afr' + —?:I—}Pf (cos®)
2 r

b b
=a, +—+| a;r +— |cosf
r r

Potential cannot diverge as » — oo, therefore a, = 0. Matching potentials at =R, we have

‘iz*OBBR3

®,.(R)=®D,,(R), therefore by=0 and b, =— . Therefore
c
o v,B,R’ cosé"
oul Crg

VB, R’ cos @ . voB,R*sin 6 »

E =-V®  =-2 6.

ouf out

cr’ cr’
(b) Surface charge is given by

0=-1—(E L[_zvoBo cosf  v,B, cosﬁ]:_3v080 cosd
4r

Lout J.,in]r:R =

c c 4me



#14 : GRADUATE ELECTROMAGNETISM

PROBLEM: A point charge —2q is at the origin, r = 0, and two point charges,
each +¢, are at r = +aZ. Consider the limit a — 0, with Q = ga? held fixed.

(a) Find the scalar potential ¢(r) in spherical coordinates.

(b) This system of charges is now placed inside a grounded, conducting
spherical shell, of radius b (with b > a). Now find the scalar potential
¢(r) everywhere, both inside and outside of the shell (again, in spherical
coordinates).

#14 : GRADUATE ELECTROMAGNETISM

SOLUTION:

22



#14 GRADUATE ELECTROMAGNETISM

SOLUTION:
(a)
2q

s q q
D, (F) = <
R e R e

_ q " q _2q
\/r2 +a’® -2arcosb \/rz +a’+2arcosf T
1 2
1 L4 _2q

1 Ji+@/r)?-2alr)cosd T 1+(alr)? +2(alr)cosd T

2
g|, 1(a) (a 3)(a) _,a
~=|l-—|—| +|—|cos@+=<|—| —2—cosO
r 2\r r 8 |\~ N

L -

a) (a 3((a) d 2
—] —(—]cosé’+—{[—] +2£cost9} =2
¥ ¥ 8 |\ r r r

2 2
2- [3] + %{23005 6’} - 2:|, tosecond orderina/r

r r

+
~ |

—

|
b | —
g ——

Q

~ |9

= q:—:(?;cosz lf»’—l)z:Q}—(B;c-:)s2 9—1)

(b) On spherical shell ®(r = b) = 0. Inside shell we have @, () = ®,(r) + ©,(r) where
®,(r) satisfies V*®, = 0. Expand potential in Legendre polynomials:

D,(r,0) = Z[a,r‘ +%}D{(cos 0)
. r

=a, + by + (alr + b—;] cos @ + [azr2 + b—i]f’z (cosd)
r r r

Now at r=0 potential should not diverge, and hence b, = 0. At =b we have

2 —_—
0= l[,23(30082 0 —1)+ a, +a,bcos @ +a,b’ M,therefore a5 =a; =0
20 N T
and a, = S Therefore the interior potential is given by

r3

O, ()= By (r) + D, (r) =2 (3cos? 9—1*—&] }




#15 : GRADUATE QUANTUM MECHANICS

PROBLEM: The Dirac Equation for a relativistic electron with no external
forces is

(iv*0, — ko) ¥(z) = 0

where 9, = 9/0" = ((1/¢)0/0t,V), k. = me/h is the Compton wave-vector,
and the Dirac matrices are

0 I 0 i 0 ag;
v :{0 —I}’ “‘[—aj o]

where I is the unit 2 x 2 matrix, and o; are the three Pauli matrices.

(a) Find one (unnormalized) energy eigenstate with positive energy and
momentum (0,0, p) along the z direction.

(b) Calculate the expectation value for the velocity for the state you have
found above.

#15 : GRADUATE QUANTUM MECHANICS

SOLUTION:
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2. The Dirac equation for a relativistic electron under no external force is given by

(17"8, — ke)y(z) =0, )
where 0, = d/0z* = (8/cdt, V), ke = mc/h is the Compton wave-vector, and the Dirac
y-matrices are

0 I 0 i 0 gj
7_[0 —I 1 ’TJ"‘ "Uj O ' (10)

I being the unit 2 x 2 matrix and o; are the three Pauli matrices.

(a) Find one (unnormalized) energy eigenstate state with a positive energy and momentum
(0,0, p) along the z direction.
Solution — The translational symmetry of the Dirac operator v#d,, or the Hamiltonian
H means that the solution can be a plane wave:

¥(z) = u(p)e™?*/" = u(p)ePE I/, (11)
Putting the wave function (11) in the Dirac equation gives
35 28] (2 ]-=[x]
o-pc —me up ug
These in turn give
Jg-pe
Uy = E—ma's (13)
_ d-pc
ug = Erma mczu,q, (14)
and
(& - pe)? ;
Uj Wﬁj, 7 =Aor B (15)

From the Jast expression, the eigenenergies are

E = +4/(mc?)? + p2c2. (16)

If we take
1
ug = [ : } : a7
up is given by Eq. (14). The positive-energy state is
1
0
U= pe/(B +me) | 49
0

where we have used = (0,0, p).



,;[H y k), (19)
—ihbjz,

= —ihaye, (20)

= ac. (21)

Te bz/f’/b.{;{j GFV)LL: L
(c) Calculate the expectation value for the velocity for the state you have found above.
Solution — The velocity is along the z direction and is

2pc?

2
(u|0¢z|u) =N m‘c—z

(22)
(d) Does the velocity of this state exhibits Zitterbewegung or Flutter?

Solution — No, Zitterbewegung is due to interference between a positive and a negative
energy solution. A single plane wave state would yield no Zitterbewegung.




#16 : GRADUATE QUANTUM MECHANICS

PROBLEM: In studying the hydrogen atom one takes the proton to be a point
charge with mass M. Suppose instead that the proton charge is distributed
uniformly over the surface of a spherical shell of radius ry = 107" m. Using
perturbation theory, calculate the shift in energy of the 1s level of hydrogen
to first order in the perturbation.

#16 : GRADUATE QUANTUM MECHANICS

SOLUTION:

24
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#17 : GRADUATE STATISTICAL MECHANICS

PROBLEM: Compute the chemical potential y of an ideal gas in the Boltzmann

limit, NA® < 1, where N is the particle density, A = \/27h?/(mkT) is the
thermal de Broglie wavelength, and m is the particle mass.

#17 : GRADUATE STATISTICAL MECHANICS

SOLUTION: The sought chemical potential is the solution of the equation

d3p
N=/Wf(5p),

where f(e) = exp|(p — €)/kT) is the Boltzmann distribution function and
£, = p?/2m is the energy of the state with momentum p. This equation can
be written as

dp p? 1
= = 3‘ I:/— — = —,
N exp(—p/kT) = I°, Ter exp( o ) 3

From here we obtain

1= kT In(NX3).
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#18 : GRADUATE STATISTICAL MECHANICS

PROBLEM: The Hamiltonian of the LC-circuit has the form analogous to that
of a harmonic oscillator:

L{fd\* 1
H—§(E)+ﬂﬁ=

where @ is the charge on the capacitor and I = d@/dt is the current through
the inductor.

(a) Find the quantum energy levels of this system.

(b) Calculate the rms voltage noise (V2)!/? in the circuit at temperature 7.

#18 : GRADUATE STATISTICAL MECHANICS

SOLUTION: (a) By analogy to the harmonic oscillator, we immediately find
E, =hw(n+1/2), where n =0,1,... and w = 1/VLC.

(b) A quick way to compute (V?) is to use its relation to the total energy E.
Using the analogy to the harmonic oscillator once again, we have

B_Jov  FLPY oo 1 1
=05 )=\ T/ F-felnets). m=gmrey

Accordingly,

hw hw 1
= — —_— ) = —
(V% = 5 coth (QkT) , W Jic
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#20 : GRADUATE MATHEMATICAL METHODS

PROBLEM: Find the asymptotic expansion as z — +oo of the Airy integral
1 o0

A(I) _ ei(t::+£3f3) dt

21 J oo

#20 : GRADUATE MATHEMATICAL METHODS

SOLUTION:

28
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