
INSTRUCTIONS

PART I : PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. ( E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks, etc.) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.





CODE NUMBER: SCORE: 1

#1 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM: Beads of equal mass m are strung at equal original distances d on
a long horizontal wire. The beads are initially at rest but can move along
the wire without friction. The leftmost bead is continuously accelerated
(towards the right) by a constant force F . The other beads do not feel F ,
but do undergo collisions with the leftmost bead and each other. As a result
of the collisions, a compression wave propagates to the right down the wire.
What are the speeds of the leftmost bead and the front of the ‘shock wave’
after a long time, if the collisions of the beads are:

(a) completely inelastic,

(b) perfectly elastic?
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#2 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM: What is the minimum proton energy needed in an accelerator to
produce antiprotons p̄ by the reaction

p + p → p + p + (p + p̄)

The rest energy of a proton and antiproton is 938 MeV. What is the mini-
mum kinetic energy for each particle to produce this reaction?
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#3 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM: Find the distribution of bulk and surface currents that will pro-
duce a magnetic field ~B = B0(ρ/b)2φ̂ for ρ ≤ b and ~B = 0, ρ ≥ b, where B0

and b are constants, and this problem is referred to a cylindrical coordinate
system (ρ, φ, z) with ρ̂ × φ̂ = ẑ.
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#4 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM: Consider a “leaky” spherical capacitor, namely a sphere with ra-
dius a surrounded by a larger sphere with radius b. The region between the
spheres is filled with a uniform medium with conductivity σ and dielectric
permittivity ǫ.

(a) Find the characteristic time for a charge Q0 on the inner sphere to
decay to 1/e of its original value.

(b) Show that this result is true for any charge density–fluctuation in a
uniforn medium with conductivity σ and dielectric constant ǫ; namely
that any charge-density fluctuation will decay in this same time. [Hint:
use the continuity equation for electric charge.]



CODE NUMBER: SCORE: 5

#5 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Consider a particle of mass m and charge q moving in the presence
of constant, uniform, crossed ~E and ~B fields. For concreteness orient your
coordinate system so that ~E points along the z axis and ~B points along
the y axis. Write the Schrodinger equation. Reduce it to a one dimen-
sional problem by separating variables. Find the expectation value of the
z-coordinate of the particle and use this to calculate the expectation value
of the x-component of the particle’s velocity.
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#6 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Find the transmission probability as a function of energy of the
incident particle for scattering in one dimension off the potential V (x) =
κ(δ(x + a) + δ(x − a)), where κ and a are positive constants.



CODE NUMBER: SCORE: 7

#7 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: Consider an electron gas with particle density n. Determine the
numerical value of n for which the Fermi energy ǫF of the gas is equal to
the rest energy, mec

2, of the electron. What is the corresponding value of
the Fermi velocity vF of the system?
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#8 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: The latent heat of melting ice is L per unit mass. A bucket
contains a mixture of water and ice, at the ice point (absolute temperature
T0). It is desired to use a cyclic refrigerator to freeze an additional mass m
of water in the bucket. The refrigerator also rejects heat QR, which all goes
into warming up a body of constant heat capacity C and, initially, also at
temperature T0.

(a) What is the change in the entropies in the bucket, the refrigerator, and
the body in this process?

(b) What is the minimum work required to run the refrigerator for this
process?
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#9 : UNDERGRADUATE MATH METHODS

PROBLEM: Consider the differential equation

α
dX

dt
+ X = f(t), where f(t) =

∫
∞

−∞

dω

2π
f̃(ω)eiωt,

where α is a positive, real constant.

(a) Find the general solution for X(t) in terms of f̃(ω) and X(t = 0) = X0.

(b) Find the solution for the case f̃(ω) = Ae−iωt1 , where A and t1 are real
constants, and t1 > 0. Evaluate the integral by contour integration, for all
values of t. Please draw the appropriate closed contour for all values of t,
noting that the appropriate contour differs depending on whether t is below
or above a certain value. Also draw the location of all poles.
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#10 : UNDERGRADUATE PHYSICAL ESTIMATES

PROBLEM: Consider a self-gravitating, uniform sphere of mass M , radius R,
and temperature T radiating as a black body. Consider the possibility that
the energy source for the radiation is supplied by the sphere’s gravitational
contraction (this was the prevailing theory about the energy source for the
Sun and stars in the 19th century.)

(a) Derive the formula for the time required for the sphere to radiate
away all its gravitational potential energy. The is called the Kelvin-
Helmholtz time.

(b) Evaluate the Kelvin-Helmholtz time for the Sun. (assume the Sun’s
mass, radius, and surface temperature are M⊙ = 2 × 1030 kg, R⊙ =
7 × 108 m, T⊙=5800K).

(c) Compare the Sun’s Kelvin-Helmholtz time to the age of the oldest
rocks on Earth (about 4 billion years old). Is gravitational contraction
a viable energy source for the Sun? Briefly discuss.
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#11 : GRADUATE CLASSICAL MECHANICS

PROBLEM: A system has the following Hamiltonian:

H(x, px, y, py) = 1

2
p2

x + xp2

y + xy2.

Solve for x(t) and y(t), assuming x(0) = y(0) = 0.
(Hint 1:

∫ y dy√
a2

−y2
= sin−1(y

a
) .)

(Hint 2: use Hamilton-Jacobi theory)
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#12 : GRADUATE CLASSICAL MECHANICS

PROBLEM: Consider an infinite, one dimensional “diatomic” chain of oscilla-
tors shown below. Each mass is separated by a distance ℓ from its neighbor,
by a spring of strength k. The masses m1,m2 alternate.

(a) Show that this chain supports two collective modes for purely longi-
tudinal oscillations. Calculate their dispersion relations.

(b) Characterize the modes in the limit ℓα < 1, where α is the wave
number
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#13 : GRADUATE ELECTROMAGNETISM

PROBLEM: A steady state current density ~J(~r) is non-zero only in the sphere
| ~r |< R. Let ~B(~r) be the magnetic field induced by this current. Determine
a numerical value for the flux through the plane x = 0; that is, determine
the value of

∫

∞

−∞

dy

∫

∞

−∞

dzBx(x, y, z)

Prove your answer.
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#14 : GRADUATE ELECTROMAGNETISM

PROBLEM: A plane electromagnetic wave of angular frequency ω = 1010sec−1

is normally incident on a planar slab of copper. Obtain an expression for
the reflection coefficient of the wave (i.e., for R) in terms of ω and the
conductivity of copper σ. What is an approximate numerical value for (1-
R)? (assume σ = 5 × 1017).
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#15 : GRADUATE QUANTUM MECHANICS

PROBLEM: Consider a spin-1/2 particle with magnetic moment µ in a uni-
form, non-constant magnetic field ~B = ~B(t). The particle wave function at
time t = 0 is

(

e−iα cos δ
eiα sin δ

)

(1)

Find the expectation value of the spin of the particle, ~s, at a later time t.
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#16 : GRADUATE QUANTUM MECHANICS

PROBLEM: A half-silvered but perfectly plane mirror is set in the z = 0
plane. An incident beam of light will be transmitted and reflected with
equal intensity by the mirror from either side of the mirror. The mirror has
such perfect symmetry that a photon incident on one side of the mirror will
have exactly the same transmission and reflection amplitudes as a photon
incident in the mirror symmetric direction on the other side of the mirror.

(a) Find the transformation matrix (known as the scattering or S matrix)
which relate the two incoming states of a photon with wave vector ~k =
(k sin θ, 0, k cos θ) and its mirror image ~km = (k sin θ, 0, k cos(π − θ)) to the
two outgoing states of the same pair of vectors.

(b) If the incoming state of a photon is either a symmetric or an antisym-
metric combination of the two incoming states described in part (a), find the
outgoing states in both cases and, hence or otherwise, find the symmetric
and antisymmetric phase shifts due to the scattering by the mirror.

(c) If two photons, one incident in the ~k direction and the other in the ~km

direction, are timed to arrive at the same region of the mirror with maximum
wave function overlap, find the probabilities of finding the outgoing photons
in the all possible cases of n photons along ~k, m photons along ~km, namely
(n,m) = (2, 0), (1, 1), (0, 2).
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#17 : GRADUATE STATISTICAL MECHANICS

PROBLEM: The potential energy of a one-dimensional, anharmonic oscillator
is given by

V (q) = cq2 − gq3,

where c and g are postive constants. Using classical statistics and treating
the anharmonic term as a perturbation, evaluate the leading contribution
of this term to the heat capacity of the oscillator and to the mean value of
the position coordinate q.
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#18 : GRADUATE STATISTICAL MECHANICS

PROBLEM: A classical N -particle system has the following density of states,

Ω(E,N) ∝ exp

{

N

[

ǫ

2
+ ǫ2 − ǫ3

3

]}

where ǫ ≡ E/N ≥ 0 is the energy per particle expressed in dimensionless
energy unit. You can assume the particles to be distinguishable and N ≫ 1.

(a) What is the entropy of the system S(E,N)? At a finite temperature T ,
show that the Helmholtz free energy per particle f(T ) ≡ F (T,N)/N can be
obtained by minimizing a function Ψ(ǫ;T ) for N → ∞.

(b) How can the average thermal energy per particle, ǭ(T ) be obtained from
Ψ(ǫ;T )? Sketch Ψ(ǫ;T ) first for T2 ≡ 2/kB and then for T1 ≡ 1/kB , where
kB is Boltzmann’s constant. Indicate on your graph the location of ǭ at T1

and T2.
Hint: At T1 you should decide between two possibilities, one with ψ > 0
and another with ψ < 0.

(c) Sketch Ψ(ǫ;T ) as T is reduced further from T1. Show that a phase
transition occurs at temperature 0 < Tc < T1 and find the value of Tc.
What is the order of the phase transition?
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#19 : GRADUATE MATHEMATICAL PHYSICS

PROBLEM: Using contour integration, evaluate the integrals

∫

∞

0

dxxα−1cosx

and
∫

∞

0

dxxα−1sinx

where 0 < α < 1.
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#20 : GRADUATE OTHER

PROBLEM: A sphere of mass M , radius R is dropped into a fluid of density
ρ0, and sinks. Assuming the fluid has kinematic viscosity ν, determine the
parameter scaling of the sphere’s terminal velocity. You can assume the flow
around the sphere is laminar.

(a) Use dimensional analysis to determine the drag force on the sphere,
for laminar flow. “Laminar flow” suggests that the drag force should
be proportional to friction and velocity.

(b) Use your result from (a) to estimate the terminal velocity of the sphere.
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CODE NUMBER: SCORE: 1

#1 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM: Beads of equal mass m are strung at equal original distances d on
a long horizontal wire. The beads are initially at rest but can move along
the wire without friction. The leftmost bead is continuously accelerated
(towards the right) by a constant force F . The other beads do not feel F ,
but do undergo collisions with the leftmost bead and each other. As a result
of the collisions, a compression wave propagates to the right down the wire.
What are the speeds of the leftmost bead and the front of the ‘shock wave’
after a long time, if the collisions of the beads are:

(a) completely inelastic,

(b) perfectly elastic?

SOLUTION:

(a) Let v0 denote the asymptotic common speed.

In a given time interval ∆t, the cluster collides with v0∆t/d further beads,
which increases its mass by ∆m = mv0∆t/d and its momentum by ∆p =
v0∆m = mv2

0∆t/d. According to Newton’s law of motion,

F = ∆p
∆t =

mv2

0

d ,

which yields v0 =
√
Fd/m for the ultimate speed in the case of inelastic

collisions.
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(b) In an elastic collision between two equal mass bodies with one of them
initially at rest, their velocities are exchanged. The body initially moving
with velocity v stops, while the second one moves away with velocity v.

The leftmost bead accelerates uniformly and reaches a speed of

v1 =
√

2Fd
m =

√
2v0

before the first (elastic) collision takes place. It then transfers its speed
to the second bead and stops, after which it starts accelerating again as a
result of the external force. The second bead moves at a constant speed
v1, collides with the third bead and stops. The third and subsequent beads
behave similarly, and a ‘shock wave’ propagates forward at speed v1.

Meanwhile, the leftmost bead is again accelerated to speed v1, collides with
the second bead, which is now at rest, and the process is repeated, thus
starting a new ‘shock wave’. The speed of the leftmost bead varies uniformly
from zero to v1, its average value is v1/2 = v0/

√
2 =

√
Fd/(2m).
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#2 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM: What is the minimum proton energy needed in an accelerator to
produce antiprotons p̄ by the reaction

p+ p→ p+ p+ (p+ p̄)

The rest energy of a proton and antiproton is 938 MeV. What is the mini-
mum kinetic energy for each particle to produce this reaction?

SOLUTION: The minimum energy will occur when the four particles are all
at rest in the center of mass system after collision. Conservation of energy
in the CM system gives

2Ep,CM = 4mpc
2

or
Ep,CM = 2mpc

2 = 2E0

which implies γ = 2 or β =
√

3/2.

To find the energy required in the lab system (one proton initially at rest),
we transform back to the lab

Elab = γ(E′ + vp′1) (1)

The velocity of the CM frame with respect to the Lab frame is just the
velocity of the proton in the CM frame. So u = v. Then

vp′1 = v(pCM ) = v(γmu) = γmv2 = γmc2β2

Since γ = 2, β =
√

3/2,
vp′1 = 3

2E0

Substituting into Eq. 1 above,

Elab = γ(2E0 + 3
2E0) = 2(7

2E0) = 7E0

Therefore the minimum proton energy in the lab system is 7mpc
2, of which

6mpc
2 is kinetic energy.
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#3 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM: Find the distribution of bulk and surface currents that will pro-
duce a magnetic field ~B = B0(ρ/b)

2φ̂ for ρ ≤ b and ~B = 0, ρ ≥ b, where B0

and b are constants, and this problem is referred to a cylindrical coordinate
system (ρ, φ, z) with ρ̂× φ̂ = ẑ.

SOLUTION:

from handwritten solution
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#4 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM: Consider a “leaky” spherical capacitor, namely a sphere with ra-
dius a surrounded by a larger sphere with radius b. The region between the
spheres is filled with a uniform medium with conductivity σ and dielectric
permittivity ǫ.

(a) Find the characteristic time for a charge Q0 on the inner sphere to
decay to 1/e of its original value.

(b) Show that this result is true for any charge density–fluctuation in a
uniforn medium with conductivity σ and dielectric constant ǫ; namely
that any charge-density fluctuation will decay in this same time. [Hint:
use the continuity equation for electric charge.]

SOLUTION:

see handwritten solution
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#5 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Consider a particle of mass m and charge q moving in the presence
of constant, uniform, crossed ~E and ~B fields. For concreteness orient your
coordinate system so that ~E points along the z axis and ~B points along
the y axis. Write the Schrodinger equation. Reduce it to a one dimen-
sional problem by separating variables. Find the expectation value of the
z-coordinate of the particle and use this to calculate the expectation value
of the x-component of the particle’s velocity.

SOLUTION: To write a Schrödinger equation with magnetic field we need
the vector potential, with ~B = ~∂ × ~A. This is gauge dependent, so choose
a convenient gauge. For example, I will use here ~A = (Bz, 0, 0) with B
the magnitude of the resulting magnetic field in the z-direction. Since the
fields are constant we can use a time-independent Schrödinger equation. The
potentail is that given by a constant uniform electric field, V = −qEz. The
magnetic field enters through minimal substitution: ~p→ ~p− (q/c) ~A. So we
have the Schrödinger equation:

Hψ =
[

1
2m

{(
px − q

cBz
)2

+ p2
y + p2

z

}
− qEz

]
ψ = Eψ

I used E for the energy to avoid confusion with the magnitude E of the
electric field. Of course, it is understood that ~p is a derivative operator.

Now, to separate this notice that the coordinates x and y do not enter
explicitly. So write

ψ(x, y, z) = eikxx+ikyyφ(z)

which gives

[
1

2m

{(
~kx − q

cBz
)2

+ ~
2k2

y + p2
z

}
− qEz

]
φ = Eφ

This is just the simple harmonic oscillator with the minimum of the potential
shifted to some non-zero z:

1
2m

(
qB
c

)2
z2 −

(
1
m

qB~kx

c + qE
)
z = 1

2m

(
qB
c

)2 (
(z − z0)

2 + z2
0

)

Since the expectation value of the coordinate in thesimple harmonic oscilla-
tor is zero, the shifted case has expectation value at z0. Solving we have

〈z〉 = z0 = c
qB

(
~kx + mcE

B

)
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The expectation value of the velocity, ~v = (1/m)(~p − (q/c) ~A) follows:

〈vx〉 = 1
m

(
〈px〉 − qB

c 〈z〉
)

= −Ec
B

Note that this is the same as the classical result for crossed E-B fields.
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#6 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Find the transmission probability as a function of energy of the
incident particle for scattering in one dimension off the potential V (x) =
κ(δ(x + a) + δ(x− a)), where κ and a are positive constants.

SOLUTION: Let ψ(x) be the wave-function. In the regions where the potential
vanishes the wave function is a solution to the free Schrodinger equation

− ~2

2m
d2

dx2ψ = Eψ (2)

The general solution is of the form aeikx + be−ikx with k > 0 giving an
energy E = ~

2k2/2m and a and b arbitrary complex coefficients. A plane
wave approaching from the far left has ψ ∼ exp(ikx). The general solution
of the Schrodinger equation is then

ψ(x) =





eikx +Re−ikx for x < −a,
Aeikx +Be−ikx for −a < x < a,

Teikx for x > a.

(3)

The interpretation is that T is the probability amplitude that a particle of
energy E is transmitted, and R that it is reflected.

Integrating the Schrodinger equation over a region of size 2ǫ centered about
x = a and letting ǫ → 0 we have equations for the discontinuity in the
derivative of the wave function:

∫ a+ǫ

a−ǫ
dx

[
− ~

2

2m
d2

dx2ψ + V (x)ψ(x) − Eψ
]

= 0 (4)

− ~
2

2m (ψ′(a+) − ψ′(a−)) + κψ(a) = 0 (5)

where ψ′(x) = dψ/dx and ψ′(a±) = limx→a± ψ
′(x). A similar expression

can be written at x = −a. The wavefunction must be continuous so we
have, in addition, the conditions ψ(±a−) = ψ(±a+).

Using these conditions in our wavefunction we have

e−ika +Reika = Ae−ika +Beika continuity at x = −a (6)

Aeika +Be−ika = Teika continuity at x = a (7)

And from discontinuity of ψ′at x = −a and x = a respectively, we have:

− i~2k
2m

[
(Ae−ika −Beika) − (e−ika −Reika)

]
= −κ

[
Ae−ika +Beika

]
(8)

− i~2k
2m

[
Teika − (Aeika −Be−ika)

]
= −κTeika (9)



CODE NUMBER: SCORE: 9

Solving for A and B in terms of T in (7) and (9) we have

A =
(
1 + imκ

~2k

)
T (10)

B = − imκ
~2k

e2ikaT (11)

and eliminating R from (6) and (8) we find

(
1 + imκ

~2k

)
A+ imκ

~2k
e2ikaB = 1 (12)

and using (10) and (11) in this we have

(
1 + imκ

~2k

)2
T +

(
mκ
~2k

)2
e4ikaT = 1 (13)

or
T = 1

1+
2imκ
~2k +( mκ

~2k )
2

(e4ika−1)
(14)

The probability of transmission is just the square of this:

|T |2 = 1

1+4( mκ
~2k )

2

cos2(2ka)+4( mκ
~2k )

3

sin(4ka)+4( mκ
~2k )

4

sin2(2ka)
(15)

This is a function of incident particle’s energy E, with k = k(E) =
√

2mE/~.
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#7 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: Consider an electron gas with particle density n. Determine the
numerical value of n for which the Fermi energy ǫF of the gas is equal to
the rest energy, mec

2, of the electron. What is the corresponding value of
the Fermi velocity vF of the system?

SOLUTION: see hand written solution







CODE NUMBER: SCORE: 11

#8 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: The latent heat of melting ice is L per unit mass. A bucket
contains a mixture of water and ice, at the ice point (absolute temperature
T0). It is desired to use a cyclic refrigerator to freeze an additional mass m
of water in the bucket. The refrigerator also rejects heat QR, which all goes
into warming up a body of constant heat capacity C and, initially, also at
temperature T0.

(a) What is the change in the entropies in the bucket, the refrigerator, and
the body in this process?

(b) What is the minimum work required to run the refrigerator for this
process?

SOLUTION:

(a) The heat removed from bucket is Lm, and the temperature stays at T0.

∆Sbucket = −Lm/T0, ∆Sfridge = 0,

∆Sbody =
∫
dQ/T = C ln(Tf/T0) = C ln(1 +QR/CT0),

where Tf = T0 +QR/C.

(b) Since ∆Suniverse = ∆Sbucket +∆Sfridge +∆Sbody ≥ 0, we have

QR ≥ CT0 (exp(Lm/CT0) − 1) .

Because ∆Ufridge = 0, the work is QR − Lm. So the minimum is

W ≥ CT0 (exp(Lm/CT0) − 1) − Lm.
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#9 : UNDERGRADUATE MATH METHODS

PROBLEM: Consider the differential equation

α
dX

dt
+X = f(t), where f(t) =

∫
∞

−∞

dω

2π
f̃(ω)eiωt,

where α is a positive, real constant.

(a) Find the general solution for X(t) in terms of f̃(ω) and X(t = 0) = X0.

(b) Find the solution for the case f̃(ω) = Ae−iωt1 , where A and t1 are real
constants, and t1 > 0. Evaluate the integral by contour integration, for all
values of t. Please draw the appropriate closed contour for all values of t,
noting that the appropriate contour differs depending on whether t is below
or above a certain value. Also draw the location of all poles.

SOLUTION:

(a) Xh(t) = X0e
−t/α.

(b) For t < t1, close the contour in the lower half plane. For t > t1 close the
contour in the upper half plane. The only pole is at ω = i/α, in the upper
half plane. So:

Xp(t) =

{
0 if t < t1
2πA
α e−(t−t1)/α if t > t1
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#10 : UNDERGRADUATE PHYSICAL ESTIMATES

PROBLEM: Consider a self-gravitating, uniform sphere of mass M , radius R,
and temperature T radiating as a black body. Consider the possibility that
the energy source for the radiation is supplied by the sphere’s gravitational
contraction (this was the prevailing theory about the energy source for the
Sun and stars in the 19th century.)

(a) Derive the formula for the time required for the sphere to radiate
away all its gravitational potential energy. The is called the Kelvin-
Helmholtz time.

(b) Evaluate the Kelvin-Helmholtz time for the Sun. (assume the Sun’s
mass, radius, and surface temperature are M⊙ = 2 × 1030 kg, R⊙ =
7 × 108 m, T⊙=5800K).

(c) Compare the Sun’s Kelvin-Helmholtz time to the age of the oldest
rocks on Earth (about 4 billion years old). Is gravitational contraction
a viable energy source for the Sun? Briefly discuss.

SOLUTION:

(a) Because of the virial theorem, the total mechanical energy of the Sun is

E = −1/2Eg

where Eg is the Sun’s gravitational potential energy. Approximating the
Sun as a uniform sphere,

Eg = −3
5

GM2
⊙

R⊙

The Kelvin-Helmholtz time is the ratio of the Sun’s mechanical energy E
and its luminosity L:

tKH = E
L = 3

10

GM2

⊙

R⊙
/4πR2

⊙σT
4
⊙ =

3GM2

⊙

40πR3

⊙
σT 4

⊙

(b) Inserting numbers, we find tKH ∼ 107 yr.

(c) No, Kelvin-Helmholtz contraction is not a viable energy source for the
Sun, otherwise the Earth would be far older than the Sun, forcing a complete
revision of our theory of the origin of the solar system.
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of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
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problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:
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a. Write the problem number and your ID number on each sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.
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#11 : GRADUATE CLASSICAL MECHANICS

PROBLEM: A system has the following Hamiltonian:

H(x, px, y, py) = 1
2p

2
x + xp2

y + xy2.

Solve for x(t) and y(t), assuming x(0) = y(0) = 0.
(Hint 1:

∫ y dy√
a2−y2

= sin−1(y
a
) .)

(Hint 2: use Hamilton-Jacobi theory)

SOLUTION: Using Hamilton-Jacobi theory this Hamiltonian is separable.

H-J equation is

1
2

(

∂S
∂x

)2
+ x

[

(

∂S
∂y

)2
+ y2

]

+ ∂S
∂t

= 0

Take S = −Et+Wx(x) +Wy(y).

Then Wy satisfies the ODE

ւ initial py
(

∂Wy

∂y

)2
+y2 = const = p2

y0 ⇒ p2
y + y2 = p2

y0

\\
p2
y

Wx(x) satisfies

E = 1
2

(

∂Wx
∂x

)2
+ x(p2

y + y2) = 1
2p

2
x + xp2

y0

Equations of motion: ẋ = ∂H
∂px

= px, ṗx = −∂H
∂x

= −p2
y0

⇒ px = px0 − p2
y0t

⇒ x(t) = px0t− p2
y0t

2/2

ẏ = ∂H
∂py

= 2xpy = 2x
√

p2
y0 − y2
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⇒ dy
q

p2y0
−y2

= 2x(t)dt

integrate:

sin−1
(

y
py0

)

= px0t
2 − p2

y0 t
3/3

y(t) = py0 sin
(

px0t
2 − p2

y0 t
3/3
)
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#12 : GRADUATE CLASSICAL MECHANICS

PROBLEM: Consider an infinite, one dimensional “diatomic” chain of oscilla-
tors shown below. Each mass is separated by a distance ℓ from its neighbor,
by a spring of strength k. The masses m1,m2 alternate.

(a) Show that this chain supports two collective modes for purely longi-
tudinal oscillations. Calculate their dispersion relations.

(b) Characterize the modes in the limit ℓα < 1, where α is the wave
number

SOLUTION:

see hand written solution
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#13 : GRADUATE ELECTROMAGNETISM

PROBLEM: A steady state current density ~J(~r) is non-zero only in the sphere
| ~r |< R. Let ~B(~r) be the magnetic field induced by this current. Determine
a numerical value for the flux through the plane x = 0; that is, determine
the value of

∫ ∞

−∞
dy

∫ ∞

−∞
dzBx(x, y, z)

Prove your answer.

SOLUTION:

see hand written solution
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#14 : GRADUATE ELECTROMAGNETISM

PROBLEM: A plane electromagnetic wave of angular frequency ω = 1010sec−1

is normally incident on a planar slab of copper. Obtain an expression for
the reflection coefficient of the wave (i.e., for R) in terms of ω and the
conductivity of copper σ. What is an approximate numerical value for (1-
R)? (assume σ = 5 × 1017).

SOLUTION: see hand written solution
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#15 : GRADUATE QUANTUM MECHANICS

PROBLEM: Consider a spin-1/2 particle with magnetic moment µ in a uni-
form, non-constant magnetic field ~B = ~B(t). The particle wave function at
time t = 0 is

(

e−iα cos δ
eiα sin δ

)

(1)

Find the expectation value of the spin of the particle, ~s, at a later time t.

SOLUTION: The time evolution of the spinor is given by Schrodinger equa-
tion,

i∂ψ
∂t

= H(t)ψ(t) (2)

The time dependent Hamiltonian is

H = −~µ · ~B(t) (3)

We choose a coordinate system with the z-axis along the direction of ~B and
use ~µ = µ~s = 1

2µ~σ, where ~σ are the Pauli matrices. Then H = − 1
2µB(t)σz

and recalling that σz = diag(1,−1), we have

∂ψ±

∂t
= ± i

2µB(t)ψ±(t) (4)

where ψ+ (ψ−) is the upper (lower) component of ψ. These are trivially
integrated,

ψ±(t) = e±
i
2µ

R t
0
B(t′) dt′ψ±(0) (5)

=





e
i
2µ

R t
0
B(t′) dt′−iα cos δ

e−(
i
2µ

R t
0
B(t′) dt′−iα) sin δ



 (6)

Now we compute the expectation value

〈~s〉 = 〈ψ(t)| 12~σ|ψ(t)〉 (7)

So we have

〈sz〉 = 1
2 [〈ψ+(t)|ψ+(t)〉 − 〈ψ−(t)|ψ−(t)〉] (8)

= 1
2 cos(2δ), (9)
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and using σx =

(

0 1
1 0

)

〈sx〉 = 1
2 [〈ψ−(t)|ψ+(t)〉 + 〈ψ+(t)|ψ−(t)〉] (10)

= 1
2 sin(2δ) cos

(

1
2µ

∫ t

0
B(t′) dt′ − α

)

. (11)

Finally, with σy =

(

0 −i
i 0

)

〈sy〉 = 1
2 [i〈ψ−(t)|ψ+(t)〉 − i〈ψ+(t)|ψ−(t)〉] (12)

= −1
2 sin(2δ) sin

(

1
2µ

∫ t

0
B(t′) dt′ − α

)

. (13)
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#16 : GRADUATE QUANTUM MECHANICS

PROBLEM: A half-silvered but perfectly plane mirror is set in the z = 0
plane. An incident beam of light will be transmitted and reflected with
equal intensity by the mirror from either side of the mirror. The mirror has
such perfect symmetry that a photon incident on one side of the mirror will
have exactly the same transmission and reflection amplitudes as a photon
incident in the mirror symmetric direction on the other side of the mirror.

(a) Find the transformation matrix (known as the scattering or S matrix)
which relate the two incoming states of a photon with wave vector ~k =
(k sin θ, 0, k cos θ) and its mirror image ~km = (k sin θ, 0, k cos(π − θ)) to the
two outgoing states of the same pair of vectors.

(b) If the incoming state of a photon is either a symmetric or an antisym-
metric combination of the two incoming states described in part (a), find the
outgoing states in both cases and, hence or otherwise, find the symmetric
and antisymmetric phase shifts due to the scattering by the mirror.

(c) If two photons, one incident in the ~k direction and the other in the ~km
direction, are timed to arrive at the same region of the mirror with maximum
wave function overlap, find the probabilities of finding the outgoing photons
in the all possible cases of n photons along ~k, m photons along ~km, namely
(n,m) = (2, 0), (1, 1), (0, 2).
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SOLUTION:

(a) In terms of the transmission amplitude t and reflection amplitude r, the
S matrix gives the transformation matrix converting the incoming waves
denoted by (+) to the outgoing ones (−), by the given symmetry,

[|k(−)〉 |km(−)〉] = [|k(+)〉 |km(+)〉]
[

t r
r t

]

.

Except for an overall phase factor of the S matrix, we can put.

t = 1√
2
, r = 1√

2
eiϕ.

From the unitarity of the S matrix, tr∗+rt∗ = 0 and, hence, ϕ = π/2. Thus,

S = 1√
2

[

1 i
i 1

]

.

(b) By the above basis states, the incoming state symmetric and antisym-
metric states are transformed into,

1√
2

[

1 i
i 1

]

[

1√
2

± 1√
2

]

= e±iπ/4

√
2

[

1
±1

]

.

Since the phase change is respectively, 2δ± for the symmetric and antisym-
metric state, the phase shifts are,

δ± = ±π
8 .

(c) In terms of the photon creation operators, the S matrix transformation
gives,

a†k → 1√
2

(

a†k + ia†km

)

,

a†km
→ 1√

2

(

ia†k + a†km

)

.

For the two photon incoming state,

a†ka
†
km

→ 1√
2

(

a†k + ia†km

)

1√
2

(

ia†k + a†km

)

= i
2

(

a†2k + a†2km

)

= i√
2
(|nk = 2, nkm = 0〉 + |nk = 0, nkm = 2〉) .

The probabilities for finding (n,m) = (2, 0), (1, 1), (0, 2) are, respectively,
1
2 , 0,

1
2 .



CODE NUMBER: SCORE: 10

#17 : GRADUATE STATISTICAL MECHANICS

PROBLEM: The potential energy of a one-dimensional, anharmonic oscillator
is given by

V (q) = cq2 − gq3,

where c and g are postive constants. Using classical statistics and treating
the anharmonic term as a perturbation, evaluate the leading contribution
of this term to the heat capacity of the oscillator and to the mean value of
the position coordinate q.

SOLUTION:

see hand written solution
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#18 : GRADUATE STATISTICAL MECHANICS

PROBLEM: A classical N -particle system has the following density of states,

Ω(E,N) ∝ exp

{

N

[

ǫ

2
+ ǫ2 − ǫ3

3

]}

where ǫ ≡ E/N ≥ 0 is the energy per particle expressed in dimensionless
energy unit. You can assume the particles to be distinguishable and N ≫ 1.

(a) What is the entropy of the system S(E,N)? At a finite temperature T ,
show that the Helmholtz free energy per particle f(T ) ≡ F (T,N)/N can be
obtained by minimizing a function Ψ(ǫ;T ) for N → ∞.

(b) How can the average thermal energy per particle, ǭ(T ) be obtained from
Ψ(ǫ;T )? Sketch Ψ(ǫ;T ) first for T2 ≡ 2/kB and then for T1 ≡ 1/kB , where
kB is Boltzmann’s constant. Indicate on your graph the location of ǭ at T1

and T2.
Hint: At T1 you should decide between two possibilities, one with ψ > 0
and another with ψ < 0.

(c) Sketch Ψ(ǫ;T ) as T is reduced further from T1. Show that a phase
transition occurs at temperature 0 < Tc < T1 and find the value of Tc.
What is the order of the phase transition?

SOLUTION:

(a) The entropy of the system is given at large N by

S(E,N) = kB lnΩ(E,N) = kB N ·
(

ǫ

2
+ ǫ2 − ǫ3

3

)

.

For largeN , the Helmholtz free energy is given by F (T,N) = min
E

[E − T · S(E,N)].

∴ f(T,N) ≡ F (T,N)

N

= min
ǫ

[

ǫ− kBT ·
(

ǫ

2
+ ǫ2 − ǫ3

3

)]

= kBT · min
ǫ

[

xǫ− ǫ2 +
ǫ3

3

]
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where x ≡ 1

kBT
− 1

2
. Hence

Ψ = xǫ− ǫ2 +
ǫ3

3
.

(b) The average thermal energy Ē is the energy for which E − T · S(E,N)
is minimized. Hence ǭ is the value of ǫ for which ψ(ǫ;T ) is minimized.

At T = T2, x = 0 and Ψ(ǫ;T2) = −ǫ2 +
ǫ3

3
. Ψ has a single minimum at

ǫ = 2. So ǭ(T2) = 2.

At T = T1, x =
1

2
and Ψ(ǫ;T1) =

ǫ

2
− ǫ2 +

ǫ3

3
.

Since
∂Ψ

∂ǫ

∣

∣

∣

∣

ǫ=ǭ

=
1

2
− 2ǭ+ ǭ2 = 0, we have two possibilities.

ǭ(T1) = 1 ±
√

2/2.

We next evaluate Ψ(ǭ(T1);T1) and find which of the above two roots give a
smaller value of ψ. Substituting ǭ2 = 2ǭ− 1

2 into Ψ(ǭ;T1), we find

Ψ(ǭ;T1) = ǭ ·
(

1

2
− ǭ+

1

3
ǭ2
)

= ǭ ·
(

1

2
− ǭ+

1

3
(2ǭ− 1

2)

)

= ǭ · 1 − ǭ

3

Using the solutions for ǭ(T1) obtained above, we have

Ψ(ǭ;T1) =
ǭ

3
·
(

∓
√

2

2

)

.

Since ǭ > 0, then the upper sign corresponds to the solution with Ψ < 0 and
is the absolute minimum. Hence,

ǭ(T1) = 1 +

√
2

2
.

The other solution corresponds to a local maximum in Ψ(ǫ;T1); see Figure.
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(c) As temperature is further reduced, x increases and the value of Ψ(ǭ)
will increase. At some temperature, Ψ(ǭ) crosses zero. This is the critical
temperature Tc since for T < Tc, the value at the minimum of Ψ exceeds 0
and the true minimum moves to ǭ(T ) = 0; see Figure.

Analytically, the critical point can be obtained by demanding that

∂Ψ

∂ǫ

∣

∣

∣

∣

ǫ=ǭ(Tc)

= x(Tc) − 2ǭ+ ǭ2 = 0

and Ψ(ǭ(Tc)) = ǭ ·
(

x(Tc) − ǭ+
ǭ2

3

)

= 0

Inserting the solution of the first equation, x(Tc) = 2ǭ − ǭ2 into the second
equation, we find

ǭ(Tc) =
3

2
, and x(Tc) =

3

4
.
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Using the definition of x, we find

Tc =
4

5kB
.

Since ǭ(T ) drops discontinuously to 0 for T < Tc, this is a first-order phase
transition.
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#19 : GRADUATE MATHEMATICAL PHYSICS

PROBLEM: Using contour integration, evaluate the integrals

∫ ∞

0
dxxα−1cosx

and
∫ ∞

0
dxxα−1sinx

where 0 < α < 1.

SOLUTION:

see hand written solution
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#20 : GRADUATE OTHER

PROBLEM: A sphere of mass M , radius R is dropped into a fluid of density
ρ0, and sinks. Assuming the fluid has kinematic viscosity ν, determine the
parameter scaling of the sphere’s terminal velocity. You can assume the flow
around the sphere is laminar.

(a) Use dimensional analysis to determine the drag force on the sphere,
for laminar flow. “Laminar flow” suggests that the drag force should
be proportional to friction and velocity.

(b) Use your result from (a) to estimate the terminal velocity of the sphere.

SOLUTION:

see hand written solution






