
INSTRUCTIONS
PART I : PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. ( E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks, etc.) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.
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#1 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM: A rectangular plate of dimensions a × b moves at relativistic ve-
locity V = V x̂ as shown in fig. 1. In the rest frame of the rectangle, the a
side makes an angle θ with respect to the x̂ axis.

Describe in detail and sketch the shape of the plate as measured by an
observer in the laboratory frame. Indicate the lengths of all sides and the
values of all interior angles. Evaluate your expressions for the case θ = 1

4π

and V =
√

2
3 c.

Figure 1: A rectangular plate moving at velocity V = V x̂.

SOLUTION: An observer in the laboratory frame will measure lengths parallel
to x̂ to be Lorentz contracted by a factor γ−1, where γ = (1− β2)−1/2 and
β = V/c. Lengths perpendicular to x̂ remain unaffected. Thus, we have the
situation depicted in fig. ??. Simple trigonometry then says

tanφ = γ tan θ , tan φ̃ = γ−1 tan θ ,

as well as

a′ = a
√

γ−2 cos2θ + sin2θ = a
√

1− β2 cos2θ

b′ = b
√

γ−2 sin2θ + cos2θ = b
√

1− β2 sin2θ .

The plate deforms to a parallelogram, with internal angles

χ = 1
2π + tan−1(γ tan θ)− tan−1(γ−1 tan θ)

χ̃ = 1
2π − tan−1(γ tan θ) + tan−1(γ−1 tan θ) .
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Note that the area of the plate as measured in the laboratory frame is

Ω′ = a′ b′ sinχ = a′ b′ cos(φ− φ̃)

= γ−1 Ω ,

where Ω = ab is the proper area. The area contraction factor is γ−1 and
not γ−2 (or γ−3 in a three-dimensional system) because only the parallel
dimension gets contracted.

Setting V =
√

2
3 c gives γ =

√
3, and with θ = 1

4π we have φ = 1
3π and

φ̃ = 1
6π. The interior angles are then χ = 2

3π and χ̃ = 1
3π. The side lengths

are a′ =
√

2
3 a and b′ =

√
2
3 b.

Figure 2: Relativistic deformation of the rectangular plate.
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#2 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM: An inextensible massless string of length ( passes through a hole
in a horizontal table. A point mass m1 on one end of the string moves
frictionlessly along the table (i.e. with two degrees of freedom), and another
point mass m2 dangles vertically from the other end. (See the sketch below.)

(a) Write the Lagrangian for this system.

(b) Under what conditions will the hanging mass remain stationary?

(c) Starting from the situation in part (b), the hanging mass is pulled
down slightly and then released. State clearly what is conserved during this
process.

(d) Compute the subsequent motion of the hanging mass.

Figure 3: Two masses connected by an inextensible string.

SOLUTION:

(a) Let the length of string on the table be r and the length hanging below
be y. The mass m1 is described by the polar coordinates (r, φ). The fixed
length constraint is y + r = (. The Lagrangian is

L = 1
2m1

(
ṙ2 + r2φ̇2

)
+ 1

2m2ẏ
2 + m2gy

= 1
2(m1 + m2)ṙ

2 + 1
2m1r

2φ̇2 + m2g((− r) .
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(b) The angular momentum is conserved: ṗφ = 0, with

pφ =
∂L

∂φ̇
= m1r

2φ̇ .

The equation of motion for r yields

(m1 + m2)r̈ = m1rφ̇
2 −m2g

=
p2

φ

m1r3
−m2 g ≡ −∂Ueff

∂r
,

where the effective potential is

Ueff =
p2

φ

2m1r2
+ m2gr .

The condition for stationary m2 is ṙ = r̈ = 0, which requires U ′
eff(r) = 0.

This, in turn, has the solution r = a, with

a =
(

p2
φ

m1m2 g

)1/3

.

(c) The tension in the string along the table is radial, hence there are no
torques, and pφ is conserved.

(d) We write r = a + η and expand the equation of motion:

(m1 + m2) η̈ = −U ′′
eff(a) η + O(η2) .

The solution is
η(t) = η0 cos

(
ωt + δ

)
,

where the oscillation frequency is

ω =

√
U ′′

eff(a)
m1 + m2

=

√
3m2 g

(m1 + m2)a
.
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#3 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM: An electric field E = E0 x̂ e−iωt is applied at the interface of a
vacuum (z > 0) and a conductor (z < 0) of conductivity σ. (The conductor
is nonmagnetic, i.e. µ = 1.)

(a) For σ % ω, calculate how deeply the electric field penetrates into the
conductor. (I.e. calculate the depth at which the electric field has decreased
to 1/e of its amplitude at the surface.)

(b) Calculate the power dissipated per unit area of the conductor.

SOLUTION:

(a) The Maxwell-Ampère law gives

∇×B =
4π

c
j +

1
c

∂E

∂t
.

With j = σE, and with σ % ω, we may drop the second term on the RHS.
Taking the time derivative and invoking Faraday’s law then gives

∂

∂t
∇×E ≈ 4πσ

c

∂E

∂t
= −c∇×∇×E

= c∇(∇ · E)−∇2E ,

whence Gauss’s law results in

∇2E =
4πσ

c2

∂E

∂t
.

Thus, we have
∂2Ex

∂z2
+

4πiσω

c2
Ex = 0 .

The solution is of the form

Ex(z, t) = A ei(kz−ωt) + B e−i(kz+ωt)

where

k2 =
4πiσω

c2
=⇒ k = (1 + i)

√
2πσω

c
Since Im(k) > 0, we must set B = 0 to have a valid solution at z → ∞, in
which case A = E0. The penetration depth of the electric field is then

( =
1

Re(k)
=

c√
2πσω

.
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(b) The power dissipated per unit area is

P

A
= 1

2σ

∞∫

0

dz
∣∣E(z, t)

∣∣2

=
σE2

0

2 Re(k)
=

√
σc2

8πω
E2

0 .
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#4 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM: What is the effective total cross section for the scattering of a
linearly polarized electromagnetic wave by a classical particle of mass m
and charge q vibrating under the influence of a spring of spring constant k?
Assume that the particle is free to move in three dimensional space, i.e. me-
chanically it is an isotropic three-dimensional classical harmonic oscillator.

Figure 4: Scattering of an electromagnetic wave by a charged harmonic
oscillator.

SOLUTION: The equation of motion for the particle is

r̈ + ω2
0 r =

qE0

m
cos(ωt) ,

where ω0 =
√

k/m. The classical dipole moment of the charge is then

d(t) = q r(t) =
q2 E0

m(ω2
0 − ω2)

cos(ωt) .

Now, the differential scattering cross section is given by

dσ

dΩ
=

1
Sinc

· dP

dΩ
,

where
Sinc =

c

4π

∣∣E0

∣∣2

is the incident intensity and

dP

dΩ
=

d̈ 2

4πc3
sin2θ
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is the dipole radiation’s differential power emission, where θ is the angle
between E0 and the emitted ratiation. Thus,

dσ

dΩ
=

(
q2

mc2

)2 ω4 sin2 θ

(ω2
0 − ω2)2

,

Integrating over solid angle, we find the total cross section

σ =
8π

3

(
q2

mc2

)2 ω4

(ω2
0 − ω2)2

.



CODE NUMBER: SCORE: 9

#5 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Because of possibility of quantum tunneling, a hydrogen atom can
be ionized even by a weak electric field E + 1. (Here we work in atomic
units: ! = e = m = 1.) Derive a formula for the ionization rate from
the ground state of the atom. Use the WKB approximation and employ
the smallness of E to simplify the calculation. Ignore any pre-exponential
factors.

SOLUTION: In the ground state the electron has energy E0 = −1/2 (we use
atomic units throughout). The ionization occurs when this electron tunnels
under the energy barrier made from the electrostatic potentials of the proton
and the external field

U(r) = −1
r
− E r .

The tunneling region corresponds to U(r) > E. For weak electric fields E
this is equivalent to r < rmax , (2E)−1. At points r not too close to the
proton, r ∼ rmax, the first term in the potential is negligible; therefore, the
barrier has an approximately triangular shape:

U(r) , −E r .

The corresponding WKB action S is given by

S =
rmax∫

0

√
2[U(r)− E0] dr ,

rmax∫

0

√
1− 2E r dr =

1
3E .

Hence, to the leading order, the ionization rate is

e−2S = e−2/3E .

This simplified derivation misses a prefactor with dimension of frequency,
which ultimately provides the correct units.
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#6 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Compute
〈
ψ0

∣∣x4
∣∣ψ0

〉
in the ground state of the one-dimensional

harmonic oscillator Hamiltonian

H =
p2

2m
+ 1

2mω2x2 .

SOLUTION:

It is convenient to reconstruct the ladder operators for the harmonic oscil-
lator. We write

a =
x

(
+

i(p

2! ,

with arbitrary (. This satisfies
[
a, a†] = 1, by construction. We furthermore

have that

a†a + 1
2 =

x2

(2
+

(2p2

4!2
.

Comparing with H, we equate the ratios of the coefficients of x2 and p2,
resulting in ( =

√
2!/mω. The position operator is given by

x = 1
2(

(
a + a†) .

We therefore must calculate

〈
ψ0

∣∣x4
∣∣ψ0

〉
=

(4

16
〈
0
∣∣(a + a†)4∣∣0

〉

The operator
(
a + a†)4, when expanded, has 24 = 16 terms. However, only

two of these will yield any finite expectation value in the ground state
∣∣0

〉
.

Clearly the only terms which survive must have an a on the left, so as
not to annihilate

〈
0
∣∣, and an a† on the right, so as not to annihilate

∣∣0
〉
.

Furthermore, the number of creation
(
a†) operators must be the same as

the number of annihilation (a) operators. This leaves

〈
ψ0

∣∣x4
∣∣ψ0

〉
=

(4

16
〈
0
∣∣ a a a†a† + a a†a a† ∣∣0

〉

=
3(4

16
=

3!2

4m2ω2
.
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#7 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM:

(a) The internal energy of a black body radiator is E(V, T ) = aV T 4. Find
the entropy S(V, T ).

Next, consider a Carnot engine with ‘black body radiation’ as its working
substance. To start with the state of the radiation is defined by its volume
V0, and its temperature T0. (This fixed the pressure p0 through an equation
of state.) The radiation is now subjected to

(i) an isothermal expansion from V = V0 to V = 2V0

(ii) an adiabatic expansion from V = 2V0 to V = 4V0

(iii) an isothermal compression from V = 4V0 to V = 2V0

(iv) an adiabatic compression from V = 2V0 to V = V0 .

Figure 5: The black body Carnot cycle.

(b) Determine the net work performed per cycle, expressed in terms of the
product p0 V0.

(c) What is the efficiency of this cycle?
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SOLUTION:

(a) We have

dE = aT 4 dV + 4aV T 3 dT

=

[
T

(
∂S

∂V

)

T

− p

]
dV + T

(
∂S

∂T

)

V

dT

Invoking a Maxwell relation, we have

T

(
∂p

∂T

)

V

− p = aT 4 ,

the solution of which is p(T ) = 1
3aT 4. Integrating dS = T−1dE + T−1p dV ,

we then obtain
S(V, T ) = 4

3 aV T 3 .

(b) Note that we can write S = 4pV/T . To compute the work done per
cycle, we can compute the net heat absorbed, since ∆Ecycle = 0. Since the
processes BC and DA are adiabatic, we have QBC = QDA = 0. Therefore,

Qcycle = QAB + QCD

= 4p0(∆V )AB + 4p1(∆V )CD

= 4p0V0 − 8p1V0 .

We need to know p1. This is determined by adiabaticity. First we find T1:

VA T 3
0 = VD T 3

1 =⇒ T1 = 2−1/3 T0 .

Next, since p ∝ T 4, we have p1 = 2−4/3 p0. Thus,

Wcycle = 4(p0 − 2p1) V0

= 4
(
1− 2−1/3

)
p0V0 .

(c) The efficiency is

η =
Wcycle

QAB

= 1− 2−1/3 = 20.6%
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#8 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: Consider a three-dimensional simple harmonic oscillator, with
Hamiltonian

H =
p2

2m
+ 1

2mω2r2 .

(a) Compute the (1-particle) classical partition function.

(b) Compute the (1-particle) quantum partition function.

SOLUTION:

(a) The classical 1-particle partition function is

ζCL =
∫

d3p d3r

h3
e
−

„
p2

2m+ 1
2mω2r2

«/
kBT

= h−3

( ∞∫

−∞

dx e−mω2x2/2kBT

)3( ∞∫

−∞

dp e−p2/2mkBT

)3

= h−3

(
2πkBT

mω2

)3/2(
2πmkBT

)3/2

=
(

kBT

!ω

)3

.

(b) The quantum mechanical energy levels are given by

E(n1, n2, n3) =
(
n1 + n2 + n3 + 3

2

)
!ω .

Thus, the 1-particle partition function is

ζQM =
∞∑

n1=0

∞∑

n2=0

∞∑

n3=0

e−E(n1,n2,n3)/kBT

=

( ∞∑

n=0

e−(n+ 1
2 )!ω/kBT

)3

=
(

e−!ω/2kBT

1− e−!ω/kBT

)3

.

Note that, for T % !ω/kB, one has exp(−!ω/kBT ) ≈ 1 − (!ω/kBT ), and
thus the ratio ζCL/ζQM → 1.
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#9 : UNDERGRADUATE PHYSICAL ESTIMATES

PROBLEM: Velocity of surface (capillary) waves v is normally much smaller
than the sound velocity c in water. For example, for the wavelength of
λ = 1 cm we have v ∼ 10−4c. On the other hand, both surface tension σ
and bulk compressibility B of water have the same physical origin: short-
range intermolecular forces. Show that the smallness of the v/c ratio is
related to small average distance a between water molecules. Estimate a by
following these steps:

(a) Use scaling and dimensional analysis to derive how v depends on wave-
length λ and physical parameters of water.

SOLUTION: As for any other waves, the capillary wave velocity is determined
by the competition of the restoring force (provided here by the surface ten-
sion) and the inertia (characterized by mass density ρ). Surface tension
has units [σ] = (energy)/(length)2 and ρ has units [ρ] = (mass)/(length)3.
There is only one combination of these two quantities and the wavelength
that has the units of velocity:

v(λ) ∼
√

σ/(λρ) .

(b) Do the same for c.

SOLUTION: From undergraduate physics

c =
√

B/ρ .

This formula can also be derived from scaling analysis, taking into account
that the compressibility has units [B] = (energy)/(length)3.

(c) Get the desired estimate of a using the data given above.

SOLUTION: Based on the dimensions of σ and B, we expect

σ ∼ Ba ,

where a is the distance between the molecules. Combined with the formulas
above, this entails

a ∼ λ
(

v
c

)2 ∼ 10−8 cm .
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#10 : UNDERGRADUATE MATHEMATICAL PHYSICS

PROBLEM: Compute the Fourier transform of the three-dimensional Yukawa
potential,

V (x) =
e−m|x|

|x| .

SOLUTION: The integral is most conveniently done in polar coordinates. We
then have

V̂ (k) =
∫

d3x
e−m|x|

|x| e−ik·x

=
∞∫

0

dr r2

π∫

0

dθ sin θ

2π∫

0

dφ
e−(mr+ikr cos θ)

r

=
2π

ik

[
1

m− ik
− 1

m + ik

]

=
4π

m2 + k2
.
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#11 : GRADUATE CLASSICAL MECHANICS

PROBLEM: Consider a one-dimensional oscillator with the time-dependent
Hamiltonian

H =
p2

2m
+ a(t) x4 .

If the time-varying parameter a(t) is slowly increased (compared to the
frequency of oscillation) to twice its initial (positive) value, by what mul-
tiplicative factors do the energy and oscillation frequency vary from their
initial values?

SOLUTION: The oscillator action J is an adiabatic invariant. With H = E,
we have

J =
1
2π

∮
p dx =

1
2π
× 4

(E/a)1/4∫

0

dx
√

2m
(
E − a x4

)

= C m1/2 E3/4 a−1/4 ,

where C is given by

C =
√

8
π

1∫

0

dx
√

1− x4

=
√

2
π

Γ
(

5
4

)

Γ
(

7
4

) ≈ 0.786894 .

(The numerical evaluation of C was not required.) Adiabatic invariance thus
implies

J ∝ E3/4

a1/4
= constant ⇒ E(J, a) ∝ J4/3 a1/3

Thus, E(2a0) = 21/3 E(a0) and the energy increases by a factor 21/3.

The frequency is given by

ω(J, a) =
∂E

∂J
∝ J1/3 a1/3 ,

hence, ω(2a0) = 21/3 ω(a0), and the oscillation frequency also increases by
a factor 21/3.
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#12 : GRADUATE CLASSICAL MECHANICS

PROBLEM: Consider a one-dimensional string of length L, uniform tension τ ,
and uniform mass density µ suspended between fixed ends. You may neglect
gravity. The motion of the string is confined to a plane and is described by
the height function y(x, t).

(a) Derive the exact equation for the transverse motion of the string. You
may not assume that y′ is small.

(b) Assume now that
∣∣y′

∣∣' 1. A bead with mass m is affixed to the string
at position x = a. Derive the equations of motion for the string and the
bead.

SOLUTION:

(a) The Lagrangian density is

L = 1
2µ

(
∂y

∂t

)2

− τ




√

1 +
(

∂y

∂x

)2

− 1



 .

The Euler-Lagrange equations are

∂L
∂y

=
∂

∂t

(
∂L
∂ẏ

)
+

∂

∂x

(
∂L
∂y′

)
.

Thus,

µ ÿ = τ
∂

∂x



 y′√
1 + y′ 2



 =
τ y′′

(
1 + y′ 2

)3/2
.

(b) The equations of motion may be derived by taking the mass density to
be µ + mδ(x− a). One arrives at two equations. The first is for the string
for x (= a, the small oscillations of which are governed by

µ ÿ = τ y′′ .

The second equation is Newton’s 2nd law for the mass m:

m ÿ(a, t) = τ
(
y′(a+, t)− y′(a−, t)

)
.

We also have the boundary conditions y(0, t) = y(L, t) = 0.



CODE NUMBER: SCORE: 3

Incidentally, we can solve the equations of motion using d’Alembert’s method
(this was not required of you). With y(0, t) = y(L, t) = 0, we have

0 ≤ x < a : y(x, t) = f(ct− x)− f(ct + x)
a < x ≤ L : y(x, t) = g(ct− x + L)− g(ct + x− L) .

Invoking continuity at x = a and Newton’s 2nd law for the mass yields

f(ct− a)− f(ct + a) = g(ct− a + L)− g(ct + a− L)

mc2
[
f ′′(ct− a)− f ′′(ct + a)

]
= τ

[
f ′(ct− a) + f ′(ct + a)

− g′(ct− a + L)− g′(ct + a− L)
]

,

or, with ξ ≡ x− ct,

f(ξ)− f(ξ + 2a) = g(ξ + L)− g(ξ + 2a− L)

f ′(ξ)− f ′(ξ + 2a) =
µ

m

[
f(ξ) + f(ξ + 2a)− g(ξ + L)− g(ξ + 2a− L)

]
.

Writing
f(ξ) =

∑

k

f̂(k) eikξ ,

our coupled equations become

sin(ka) f̂(k) = − sin(kL− ka) ĝ(k)

k' sin(ka) f̂(k) = cos(ka) f̂(k)− cos(kL− ka) ĝ(k) ,

where ' ≡ m/µ. We then have,

ĝ(k) = − sin(ka)
sin(kL− ka)

f̂(k) .

and we obtain the following equation for k:

cot(ka) + cot(kL− ka) = k' ,

This determines the allowed values of k in the Fourier decomposition of f(ξ).
When m = 0, we have kL = nπ, which recapitulates Bernoulli’s solution.
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#13 : GRADUATE ELECTROMAGNETISM

PROBLEM: Consider a uniaxial crystal with dielectric tensor

εαβ = ε⊥
(
δαβ − nα nβ

)
+ ε‖ nα nβ ,

where n̂ is the optical axis of the crystal. Find and solve the dispersion
equations for electromagnetic waves in the uniaxial crystal. You may assume
the magnetic permeability is isotropic, with µ = 1.

Hint : You may find it convenient to choose ẑ = n̂, in which case

εαβ =




ε⊥ 0 0
0 ε⊥ 0
0 0 ε‖



 .

Then decompose k and E as

k = kx x̂ + kz ẑ , E = Ex x̂ + Ez ẑ .

SOLUTION:

We write E(x, t) = E ei(k·x−ωt) and B(x, t) = B ei(k·x−ωt). It is convenient
to express the vectors k and E in terms of components parallel to and
perpendicular to the symmetry axis n̂. Thus, we write

kα = k‖ nα + k⊥,α

Eα = E‖ nα + E⊥,α ,

where n̂ · k⊥ = n̂ · E⊥ = 0. Maxwell’s equations, with no sources, may be
written as

kα εαβ Eβ = 0 εαβγ kβ Eγ =
ω

c
Bα

kα Bα = 0 εαβγ kβ Bγ = −ω

c
εαβ Eβ .

In terms of the components k‖, k⊥, E‖, and E⊥, Gauss’s law says

ε‖ k‖ E‖ + ε⊥ k⊥ · E⊥ = 0 .

Taking the curl of Faraday’s law and invoking the Maxwell-Ampère law, we
have (

k2 δαβ − kα kβ −
ω2

c2
εαβ

)
Eβ = 0 .
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Expressed in terms of the components k‖, k⊥, E‖, and E⊥, these equations
may be written in the form

k2 E‖ −
(
k‖ E‖ + k⊥ · E⊥

)
k‖ −

ω2

c2
ε‖ E‖ = 0

k2 E⊥ −
(
k‖ E‖ + k⊥ · E⊥

)
k⊥ −

ω2

c2
ε⊥ E⊥ = 0 .

Invoking our earlier result from Gauss’s law, we can eliminate k⊥ · E⊥, and
express the first of these equations as

k2 E‖ −
(

1−
ε‖
ε⊥

)
k2
‖ E‖ −

ω2

c2
ε‖ E‖ = 0 ,

which yields the dispersion

ω2

c2
= ε−1

‖ k2
⊥ + ε−1

⊥ k2
‖ .

(Had we used the second of the equations, for the components perpendicular
to n̂, we’d have obtained the same expression.)
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#14 : GRADUATE ELECTROMAGNETISM

PROBLEM: Consider an infinite sheet extending over the (y, z) plane. Charge
is uniformly distributed on this sheet, with surface charge density σ.

(a) An observer moves in a trajectory x(t) = (x0 , 0 , vt). Calculate the
electromagnetic fields in the rest frame of this observer by computing the
4-current density vector in this frame, and then solving Maxwell’s equations
for this source.

(b) Compute the fields by another method, i.e. invoking the relativistic
transformation of E and B fields.

SOLUTION:

(a) Recall the Lorentz boost of 4-vectors:

x′ 0 = γ x0 − γβ x‖

x′‖ = −γβ x0 + γ x‖

x′⊥ = x⊥ ,

where frame K ′ moves with velocity cβ with respect to K, where γ =
(1− β2)−1/2, and where

x‖ = β̂ · x , x⊥ = x− x‖ β̂

are the components of x parallel to and perpendicular to β̂, respectively.
(For the inverse boost, from K ′ to K, simply reverse the sign of β.)

For our problem, K is the laboratory frame, in which the charged sheet is at
rest, and K ′ is the frame of the observer, with β̂ = ẑ. The current density
4-vector in frame K is clearly jµ = (cσδ(x) , 0). Thus, in the K ′ frame, we
have

cρ′ = γcσ δ(x′) , j′z = −γβcσ δ(x′) , j′x = j′y = 0 .

Note that x = x′ because the x̂ direction is orthogonal to β. Thus, in frame
K ′ the surface charge density is γσ, and hence the electric field measured
by the observer is

E′(x′) = 2πγσ x̂ .

The Maxwell-Ampère law tells us

∇′ ×B′ =
4π

c
j′ ,
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from which we have

∂B′
y

∂x′
− ∂B′

x

∂y′
= −4πγβ δ(x′) ,

the solution of which is

B′
y = −2πγβσ sgn(x′) ,

hence the observer measures B′
y = −2πγβσ.

(b) Alternatively, one can compute the fields in the laboratory frame K and
transform them into the frame of the observer K ′. The transformation rules
for fields are

E′
‖ = E‖ , E′

⊥ = γ
(
E⊥ + β ×B⊥

)

B′
‖ = B‖ , B′

⊥ = γ
(
B⊥ − β ×E⊥

)
.

Now in the K frame, clearly we have E = 2πσ sgn(x) x̂ and B = 0. From
the above transformation formulae, we then obtain

E′ = 2πγσ sgn(x′) x̂ , B′ = −2πγβσ sgn(x′) ŷ ,

which agrees with the result from part (a).
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#15 : GRADUATE QUANTUM MECHANICS

PROBLEM: Given an attractive Yukawa potential,

V (r) = −V0
e−r/a

r/a
,

write a variational l = 0 state

ψ(r) = C e−κr ,

where κ is the variational parameter.

(a) What is the value of the normalization constant C?

(b) What is the trial energy E(κ) for a particle of mass m?

(c) What is the condition on κ which optimizes the variational energy?

(d) For what values of a does this procedure yield a bound state?

SOLUTION:

(a) We write

∫
d3r

∣∣ψ(r)
∣∣2 = 4π|C|2

∞∫

0

dr r2 e−2κr =
π|C|2

κ3
= 1 .

Thus,

C =
κ3/2

√
π

.

(b) The trial energy is

E =
∫

d3r

{
!2

2m

∣∣∇ψ(r)
∣∣2 + V (r)

∣∣ψ(r)
∣∣2

}

=
κ3

π
· 4π

∞∫

0

dr r2

{
!2

2m
κ2 e−2κr − V0

e−r/a

r/a
e−2κr

}

=
!2κ2

2m
− 4V0 κ3a3

(1 + 2κa)2
.
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(c) We can simplify the notation a bit if we define the dimensionless pa-
rameter λ ≡ 2κa. Then

E(λ) = 1
2

(
T0 λ2 − V0

λ3

(λ + 1)2

)
,

where

T0 ≡
!2

4ma2
.

Differentiating with respect to λ then yields

∂E

∂λ
= T0 λ− 1

2V0
λ2 (λ + 3)
(λ + 1)3

.

Setting ∂E/∂λ = 0 then yields

!2

2ma2 V0
=

λ (λ + 3)
(λ + 1)3

.

(d) If we plug the result from (c) into the equation for E(λ), we find

E0 = −1
4V0

λ3 (λ− 1)
(λ + 1)3

.

Thus, there is a bound state (i.e. E0 < 0) for λ > 1, which means

a >
!

mV0
.



CODE NUMBER: SCORE: 10

#16 : GRADUATE QUANTUM MECHANICS

PROBLEM: The harmonic oscillator coherent state
∣∣z

〉
is an eigenstate of the

annihilation operator, with a
∣∣z

〉
= z

∣∣z
〉
, and z a complex number.

(a) Find an explicit representation for
∣∣z

〉
in terms of occupation number

eigenstates
∣∣n

〉
.

(b) Compute the overlap
〈
w

∣∣z
〉

of two coherent states.

SOLUTION:

(a) We write
∣∣z

〉
=

∞∑

n=0

Cn

∣∣n
〉

,

whence a
∣∣z

〉
= z

∣∣z
〉

entails

√
n + 1 Cn+1 = z Cn =⇒ Cn =

zn

√
n!

C0 .

Normalization then demands

〈
z
∣∣z

〉
= |C0|

2
∞∑

n=0

(z̄z)n

n!
= |C0|

2 ez̄z = 1 .

Thus, C0 = exp
(
− 1

2 z̄z
)

and

∣∣z
〉

= e−
1
2 z̄z

∞∑

n=0

zn

√
n!

∣∣n
〉

.

(b) From the above definition of
∣∣z

〉
, we have

〈
w

∣∣z
〉

= e−
1
2 z̄z e−

1
2 w̄w

∞∑

m=0

∞∑

n=0

w̄m zn

√
m!n!

〈
m

∣∣n
〉

= e−
1
2 z̄z e−

1
2 w̄w

∞∑

n=0

(w̄ z)n

n!

= e−
1
2 w̄w e−

1
2 z̄z ew̄z .
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#17 : GRADUATE STATISTICAL MECHANICS

PROBLEM: A surface containing M adsorption sites is in equilibrium with a
monatomic ideal gas. Atoms adsorbed on the surface have an energy −∆
and no kinetic energy. Each adsorption site can accommodate at most one
atom. Calculate the fraction f of occupied adsorption sites as a function of
the gas density n, the temperature T , the binding energy ∆, and physical
constants.

Hint : The single particle partition function for the nonrelativistic ideal gas
is ζ = V λ−3

T , where λT is the thermal wavelength.

SOLUTION: The grand partition function for the surface is

Ξs = e−Ωs/kBT =
(
1 + e−∆/kBT eµ/kBT

)M
.

The fraction of occupied sites is

f =
〈Ns〉
M

= −kBT

M

∂Ωs

∂µ
=

eµ/kBT

eµ/kBT + e∆/kBT
.

Since the surface is in equilibrium with the gas, its fugacity z = exp(µ/kBT )
and temperature T are the same as in the gas.

For a monatomic ideal gas, the single particle partition function is ζ = V λ−3
T ,

where λT =
√

2π!2/mkBT is the thermal wavelength. Thus, the grand
partition function, for indistinguishable particles, is

Ξg =
∞∑

Ng=0

eNgµ/kBT

Ng!

(
V λ−3

T

)Ng

= exp
(
V λ−3

T eµ/kBT
)

.

The gas density is

n =
〈Ng〉
V

= −kBT

V

∂Ωg

∂µ
= λ−3

T eµ/kBT .

Thus, the fugacity of both the gas and the surface is given by z = nλ3
T , and

f =
nλ3

T

nλ3
T + exp(∆/kBT )

.
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#18 : GRADUATE STATISTICAL MECHANICS

PROBLEM: The bosonic low-energy excitations of a two-dimensional system
of dimensions L× L are described by the wave equation

ρ
∂2u

∂t2
+ C∇4u = 0

where ∇4 = (∇2)2. (The scalar u(r, t) might represent height fluctuations
normal to the two-dimensional plane.)

(a) Solve for the dispersion relation ω(k).

(b) Compute the density of states g(ω).

(c) Compute, to within a numerical constant, the low-temperature specific
heat C(T ). You may assume that kBT is much greater than the spacing
between neighboring quantized energy levels.

SOLUTION: (a) The wave equation is

ρ
∂2u

∂t2
+ C∇4u = 0

so substituting u(r, t) = u0 ei(k·r−ωt) gives −ρ ω2 + Ck4 = 0, i.e.

ω =

√
C

ρ
k2

where k = |k|.

(b) The density of states is given by

g(ω) dω =
L2

4π2
2πk dk =

L2

4π

√
ρ

C
dω

which gives

g(ω) =
L2

4π

√
ρ

C
,

a constant.

(c) The mean energy is

E(T ) =
∞∫

0

dω g(ω) !ω
{

n(ω) + 1
2

}
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where n(ω) = (e!ω/kBT −1)−1 is the Bose occupancy factor. Note that E(T )
is infinite! This is because of the zero point energy. (If we had imposed
an ultraviolet (short wavelength) cutoff on the density of states, as in the
Debye model, this wouldn’t have happened.) However, the infinite zero point
energy is temperature independent and doesn’t affect the specific heat. The
T -dependent part to E(T ) is

E(T )− E0 =
L2

4π

√
ρ

C

∞∫

0

dω
!ω

e!ω/kBT − 1

=
L2

4π

√
ρ

C

(kBT )2

!

∞∫

0

dx
x

ex − 1

=
π2

6
L2

4π

√
ρ

C

(kBT )2

! ,

where the integral gives the numerical constant 1
6π2. The specific heat is

then linear in T :

C(T ) =
∂E

∂T
=

π2

6
L2

4π

√
ρ

C

2k2
BT

! =
πk2

B T

12 !

√
ρ

C
L2
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#19 : GRADUATE MATHEMATICAL PHYSICS

PROBLEM: Find the leading-order asymptotic behavior of the integral

I(k) =
∞∫

−∞

dx
eikx

√
x2 + 1

,

for k . 1. Express both the exponential and the pre-exponential terms in
terms of elementary functions.

SOLUTION: Viewing x = u+ iv as a complex variable, I(x) is a contour inte-
gral running along the real axis. We can analytically continue the integrand
into the upper half-plane of x by introducing a branch cut along the line
(i, +i∞). Assuming k > 0 and using the Jordan lemma, the contour can
then be deformed to wrap around the cut, leading to

I(k) = 2
∞∫

1

dv
e−kv

√
v2 − 1

,

For k . 1 the exponential rapidly decays; therefore, the leading-order
asymptotic behavior can be determined expanding the new integrand near
the lower limit, v = 1:

I(k) 0
√

2
∞∫

1

dv
e−kv

√
v − 1

.

Changing the variable to z = (v − 1)k, we get

I(k) 0
√

2
k

e−k

∞∫

0

dz
e−z

√
z

=
√

2
k

e−k Γ
(

1
2

)
=

√
2π

k
e−k ,

where Γ(z) is the Gamma function. Finally, since the original intergal is
even in k, we can write

I(k) 0

√
2π

|k| e−|k| , k . 1 .

Note : The full expression may be written as I(k) = 2K0

(
|k|

)
, where K0(z)

is the Bessel function of imaginary argument.
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#20 : GRADUATE MATHEMATICAL PHYSICS

PROBLEM: Consider an infinite square lattice resistor network, as depicted in
fig. 1. Each individual link resistance is R.

Figure 1: A section of an infinite square resistor lattice network. The link
resistance is R. An ohmmeter measures the resistance RAB.

(a) Let the voltage at lattice point (m,n) be denoted by Vm,n, and let any
external current flowing into (m,n) be denoted by Im,n (i.e. the current
injected in or drawn out of a note by the ohmmeter). Show that Kirchoff’s
laws demand

4Vm,n − Vm−1,n − Vm+1,n − Vm,n−1 − Vm,n+1 = Im,n R .

(b) An ohmmeter is then brought into measure the resistance between the
points A = (0, 0) and B = (1, 1) on the opposite corners of a square. Find
an expression for RAB.

Hint : Kirchoff’s laws may be more tractable in Fourier space. For any
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lattice variable Qm,n, we define the direct and inverse Fourier transforms as

Q̂(kx, ky) =
∑

m,n

Qm,n e−ikxm e−ikyn

Qm,n =
π∫

−π

dkx

2π

π∫

−π

dky

2π
Q̂(kx, ky) eikxm eikyn .

Your expression for RAB may involve an integral (or double integral), which
you do not need to evaluate.

SOLUTION:

(a) The current along any link is the voltage drop across that link, divided
by the link resistance. Thus, the current flowing from site (m,n) to site
(m − 1, n) is

(
Vm,n − Vm−1,n

)
/R. Current conservation demands that the

current Im,n injected at (m,n) must be equal to the sum of all the link
currents flowing out from (m,n). Thus,

4Vm,n − Vm−1,n − Vm+1,n − Vm,n−1 − Vm,n+1 = Im,n R .

(b) The ohmmeter injects a current I0 at site (0, 0) and extracts it at site
(1, 1). Thus, the external current is given by

Im,n = I0

(
δm,0 δn,0 − δm,1 δn,1

)
.

Thus,

V̂ (k) =
I0 R

(
1− e−ikx e−iky

)

4− 2 cos kx − 2 cos ky
,

and

RAB =
V0,0 − V1,1

I0

= R

π∫

−π

dkx

2π

π∫

−π

dky

2π

1− cos(kx + ky)
2− cos kx − cos ky

.

This was as far as you needed to go, however, it is possible to evaluate the
integral. We start by writing cos(kx + ky) = cos kx cos ky + sin kx sin ky in
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the numerator, and then throw out the sine term, since it is odd in each of
kx,y while the denominator is even. Then we can write

1− cos kx cos ky

2− cos kx − cos ky
=

(1− cos kx)2

2− cos kx − cos ky
+ cos kx .

The second term on the RHS above can be dropped. Making use of

π∫

−π

dθ

a− b cos θ
=

Θ(a− b)√
a2 − b2

(for a, b positive), we are left with the integral

RAB

R
=

π∫

−π

dθ

2π

(1− cos θ)2√
(2− cos θ)2 − 1

=
1
π

2∫

0

ds
s√

4− s2
=

2
π

,

where we substituted s = 1− cos θ. Thus,

RAB =
2R

π
.

So you can use an (infinite) resistor network to measure π (!).
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