
INSTRUCTIONS

PART I : PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. ( E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks, etc.) in a corner of the exam room.

2. Departmental examination paper is provided. Please make sure you:

a. Write the problem number and your ID number on each sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.





CODE NUMBER: SCORE: 1

#1 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM: As shown in the figure, a uniform thin rod of weight W is sup-
ported horizontally by two supports, one at each end. At t = 0, one of these
supports is removed. Find the force on the remaining support immediately
thereafter.
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#2 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM: A circular hoop of mass M and radius R rolls down a plane
inclined at an angle θ in the Earth’s gravitational field. For simplicity,
assume the hoop to be infinitely thin (i.e., all the mass is at distance R from
the geometric center of the hoop), and rolls without slipping.

h

R

 

Answer the following questions if the hoop starts at rest at height h as shown
in the figure:

(a) how fast is it moving when it reaches the bottom of the ramp?
(b) what is the hoops angular velocity at the bottom of the ramp?
(c) how long does it take to reach the bottom of the ramp?
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#3 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM: The rim of a wheel of radius b is charged with a linear charge
density λ. The wheel is suspended horizontally and is free to rotate. The
spokes are made of some non-conducting material. In the central region out
to a radius a < b is a uniform magnetic field B pointing up; see Figure.
Explain qualitatively what happens to the wheel when somebody turns the
B-field off, and compute the resulting angular momentum given to the wheel.
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#4 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM: As shown in the figure, two parallel conducting plates of dimension
L×L are separated by a distance a≪ L→ ∞ and are at electrical potential
V = 0. A thin charged membrane of height a and length L is inserted
perpendicular to the plates at x = 0. The potential on this membrane is
V (0, y) = V0 sin(πy/a). The plates and the membrane extend a distance L
in the direction perpendicular to the plane of the figure.

 

 

 

 

 

 

 

 

 

 

 

!

x 

0 L/2 - L/2 

y = a 

y = 0 

y  

(a) Find the electrical potential, V (x, y), in the region between the plates
to the right of the membrane (i.e., for x > 0). (You may ignore values of
x ≥ L/2.)

(b) Find the sign and magnitude of the charge density, σ(x), on the con-
ducting plates at y = 0 and y = a to the right of the membrane, x > 0.

(c) Find the magnitudes and directions of the forces on the entire upper
and lower plates.
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#5 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Consider a quantum mechanical system which only has two avail-
able states, i.e. the ket |ψ〉 is a vector in a 2-dimensional, complex vector
space. This space has a complete, orthonormal basis of kets |ei〉, for i = 1, 2.
The Hamiltonian of this system is H = E1|e1〉〈e1| + E2|e2〉〈e2|, where
E1 < E2. There is another observable, B, with B = b|e1〉〈e2| + b|e2〉〈e1|,
where b is a positive real number.

The following experiments are performed in sequence:

• At time t1 = 0, the observable B is measured.

• At time t2 (with t2 > t1), the energy is measured.

• At time t3 (with t3 > t2), the observable B is measured.

• At time t4 (with t4 > t3), the observable B is measured again.

Answer the following questions about the outcomes of these experiments:

(a) Suppose that the outcome of experiment at time t1 is the larger of the
two possible values. Write the wavefunction for general time t in the range
t1 < t < t2.

(b) Suppose that at time t2 the larger possible energy is measured. Write
the wavefunction for general time t in the range t2 < t < t3.

(c) Suppose that at time t3 the larger possible value of the observable B is
measured. For what values (list all of them) of ∆t ≡ t4 − t3 is there 100%
probability that the smaller value of B will be measured at time t4?
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#6 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Find the tightest upper bound on the ground state energy of the
one-dimensional harmonic oscillator by using a trial wave function of the
form

ψ(x) =
D

x2 + a2

where D is to be determined by normalization and a is an adjustable pa-
rameter.

(You may express your answers in terms of dimensionless integrals.)
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#7 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: The internal energy of a non-relativistic Fermi gas at low temper-
atures is given by the expression

U =
3

5
NεF

[

1 +
5π2

12

(

kT

εF

)2

+ · · ·

]

,

where εF is the Fermi energy of the gas. Note that εF ∝ (N/V )2/3.

(a) Using the expression for U (and your knowledge of Thermodynamics),
derive the corresponding expressions for the pressure P and the Helmholtz
free energy F of the gas.

(b) Using these expressions for P and F , show that the corresponding ex-
pression for the chemical potential µ of the gas is

µ = εF

[

1 −
π2

12

(

kT

εF

)2

+ · · ·

]

.
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#8 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: The “surface waves” in a low-temperature Bose liquid, upon quan-
tization, behave like a two-dimensional gas of non-interacting excitations
called “ripplons”. Like potons or phonons, these excitations are indefinite

in number and obey Bose-Einstein statistics. Their energy-momentum rela-
tion, however, is ε = a · p3/2, where a is a constant.

Find the temperature dependence of the total energy per unit area of these
excitations.
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#9 : UNDERGRADUATE PHYSICAL ESTIMATES

PROBLEM:

(a) The Sun may be regarded as a black-body radiator, of radius R⊙ ≈
7 × 108 m, at a temperature 6, 000 K. Calculate the “solar radiative flux”
per unit area per unit time as observed on the surface of the Earth. The
distance between the Sun and the Earth is D = 1.5 × 1011 m.

(b) Next, suppose that the Earth maintains itself in a steady state by con-
tinually radiating away into space as much energy as it receives from the
Sun. If the Earth too were regarded a blackbody radiator, what would its
steady-state temperature be?
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#10 : UNDERGRADUATE PHYSICAL ESTIMATES

PROBLEM: As shown in the figure, a capacitor has a thin layer of liquid helium
on one of the metal plates. The electric field in the space between the liquid
layer and the other plate is E = 100 volts/meter, pointing upwards. An
electron is trapped on the upper liquid surface by the electric field. The
helium surface may be regarded as impenetrable by the electron. Estimate
the order of magnitude of the uncertainty in the vertical position of the
electron in Angstroms without explicitly solving the Schrödinger equation.
[ You may ignore any possible image charge effects.]

liquid helium

electron E=100V/m
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#1 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM: As shown in the figure, a uniform thin rod of weight W is sup-
ported horizontally by two supports, one at each end. At t = 0, one of these
supports is removed. Find the force on the remaining support immediately
thereafter.
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SOLUTION:

Downward acceleration ẍ of the center of mass of the rod is given by

mẍ = W − F,

where F is the force on the support. The angular momentum equation gives

W
L

2
= Iθ̈,

where I = 1
3mL

2 is the moment of inertia of the rod about an end, and L
is the length of the rod.

For small θ, i.e., short times, ẍ = L
2 θ̈. Combining these equations, we find

F = W −mẍ = W −mL
2 θ̈ = W −m

L

2

WL

2I
= W −m

L

2

3WL

2mL2
=
W

4
.
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#2 : UNDERGRADUATE CLASSICAL MECHANICS

PROBLEM: A circular hoop of mass M and radius R rolls down a plane
inclined at an angle θ in the Earth’s gravitational field. For simplicity,
assume the hoop to be infinitely thin (i.e., all the mass is at distance R from
the geometric center of the hoop), and rolls without slipping.

h

R

 

Answer the following questions if the hoop starts at rest at height h as shown
in the figure:

(a) how fast is it moving when it reaches the bottom of the ramp?
(b) what is the hoops angular velocity at the bottom of the ramp?
(c) how long does it take to reach the bottom of the ramp?

SOLUTION:

(a) By conservation of energy, we have

T + U = Tkin + Trot + U = const.
Trot = 1

2Iω
2 = 1

2MR2ω2, Tkin = 1
2MV 2

Rolling without slipping implies V = ωR. Hence,

T = MV 2, U = Mgh

∴ V =
√

gh

(b) ω = V/R =
√
gh/R

(c) Let x be the vertical distance hoop has dropped measured from its start-
ing elevation, and s be the distance the hoop has rolled along the inclined
plane. From above, we have

V (x) =
√
gx =

ds

dt
=

1

sin θ

dx

dt
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Solving for dx as a function of dt:

x−1/2dx =
√
g sin θ · dt

∫ h

0
2d(x1/2) = 2h1/2 =

√
g sin θ

∫ t

0
dt =

√
g sin θ · t

∴ t = 2

√

h

g

/

sin θ

Notice that for θ = 90◦, this is twice the time for a point mass to fall a
distance h in the Earth’s gravitational field.
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#3 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM: The rim of a wheel of radius b is charged with a linear charge
density λ. The wheel is suspended horizontally and is free to rotate. The
spokes are made of some non-conducting material. In the central region out
to a radius a < b is a uniform magnetic field B pointing up; see Figure.
Explain qualitatively what happens to the wheel when somebody turns the
B-field off, and compute the resulting angular momentum given to the wheel.

SOLUTION: Qualitatively, the changing magnetic field will induce an electric
field, curling around the axis of the wheel. This will exert a force on the
charges on the rim, and the wheel starts spinning. According to Lenz’s law,
it will spin in the direction to maintain the upward flux. The rotation is
thus counterclockwise when viewed from above.

Quantitatively, Faraday’s law allows us to relate the E field to the change
in flux as follows:

∮

Edl = −dφ
dt

= −πa2dB

dt

The torque, ~T , on a line segment d~l is given by d~T = ~r× ~F = bλEdlẑ. The
total torque is thus calculated as

|~T | = bλ

∮

E dl = −bλπa2dB

dt

From this, we can find the total angular momentum L the wheel reaches:

L =

∫

|~T |dt = −bλπa2

0
∫

B

dB

dt
dt = bλπa2B
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#4 : UNDERGRADUATE ELECTROMAGNETISM

PROBLEM: As shown in the figure, two parallel conducting plates of dimension
L×L are separated by a distance a≪ L→ ∞ and are at electrical potential
V = 0. A thin charged membrane of height a and length L is inserted
perpendicular to the plates at x = 0. The potential on this membrane is
V (0, y) = V0 sin(πy/a). The plates and the membrane extend a distance L
in the direction perpendicular to the plane of the figure.
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(a) Find the electrical potential, V (x, y), in the region between the plates
to the right of the membrane (i.e., for x > 0). (You may ignore values of
x ≥ L/2.)

(b) Find the sign and magnitude of the charge density, σ(x), on the con-
ducting plates at y = 0 and y = a to the right of the membrane, x > 0.

(c) Find the magnitudes and directions of the forces on the entire upper
and lower plates.

SOLUTION:

(a) The electric potential V satisfies the Laplace equation, ∇2V = 0. Given
the boundary conditions

V (x, y = 0) = 0 = V (x, y = a), and V (x = 0, y) = V0,

the solution is of the form

V (x, y) = V0 sin
(πy

a

)

eikx.

Inserting this solution into the Laplace equation, we have

−
(π

a

)2
− k2 = 0,

or k = ±iπ/a. Thus, the solution (for x ≥ 0) is

V (x, y) = V0 sin
(πy

a

)

e−πx/a.
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(We can ignore x ≥ L/2 since e−piL/2a ≪ 1 for L/a≫ 1.)

(b) To find the charge density σ at the surface of the conductors, we need
the electric field ~E at the surface. The latter can be obtained from the
potential V (x, y) as

~E = −~∇V =
πV0

a

[

sin
(πy

a

)

x̂ − cos
(πy

a

)

ŷ

]

e−πx/a.

At the surfaces of the conducting plates at y = 0 and y = a, the induced
charge densities are the same, with

σ(x, y = 0) = σ(x, y = a) = ǫ0 ~E · n̂ = −ǫ0πV0

a
e−πx/a, x ≥ 0

for both plates.

(c) Force exerted on a conductor is given by

~F =

∫

σ ~Eext dA,

integrated over the surface area of the conductor, with Eext = Eself = E/2.

On the upper plate (and x ≥ 0),

~F = L

∫ L/2→∞

0
dxσ(x, y = a) · 1

2
~E(x, y = a)

= −ǫ0π
2V 2

0 L

2a2

[
∫

∞

0
e−2πx/adx

]

ŷ

= −π
4
ǫ0V

2
0 L ŷ

Including also the part from x ≤ 0, the total force exerted on the top plate
is

~Fupper = −π
2
ǫ0V

2
0 L ŷ,

i.e., the top plate is attracted towards the lower plate.

By symmetry, the lower plate is attracted towards the upper plate with force
of the same magnitude, i.e.,

~Flower = +
π

2
ǫ0V

2
0 L ŷ.
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#5 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Consider a quantum mechanical system which only has two avail-
able states, i.e. the ket |ψ〉 is a vector in a 2-dimensional, complex vector
space. This space has a complete, orthonormal basis of kets |ei〉, for i = 1, 2.
The Hamiltonian of this system is H = E1|e1〉〈e1| + E2|e2〉〈e2|, where
E1 < E2. There is another observable, B, with B = b|e1〉〈e2| + b|e2〉〈e1|,
where b is a positive real number.

The following experiments are performed in sequence:

• At time t1 = 0, the observable B is measured.

• At time t2 (with t2 > t1), the energy is measured.

• At time t3 (with t3 > t2), the observable B is measured.

• At time t4 (with t4 > t3), the observable B is measured again.

Answer the following questions about the outcomes of these experiments:

(a) Suppose that the outcome of experiment at time t1 is the larger of the
two possible values. Write the wavefunction for general time t in the range
t1 < t < t2.

(b) Suppose that at time t2 the larger possible energy is measured. Write
the wavefunction for general time t in the range t2 < t < t3.

(c) Suppose that at time t3 the larger possible value of the observable B is
measured. For what values (list all of them) of ∆t ≡ t4 − t3 is there 100%
probability that the smaller value of B will be measured at time t4?
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SOLUTION:

(a) First solve for the eigenvalues and eigenvectors of the operator B:

(

0 b
b 0

)

·
(

|e1〉
|e2〉

)

= λ ·
(

|e1〉
|e2〉

)

.

The eigenvalues are λ = ±b, and the eigenvectors are

| + b〉 =
1√
2
(|e1〉 + |e2〉)

| − b〉 =
1√
2
(|e1〉 − |e2〉).

Since the eigenvalue +b is measured at time t1, we have

|ψ(t1)〉 = | + b〉 =
1√
2
(|e1〉 + |e2〉).

Then the time evolution of the wavefunction for t1 < t < t2 is given by

|ψ(t)〉 =
1√
2
(e−iE1t/~|e1〉 + e−iE2t/~|e2〉).

(b) |ψ(t2)〉 = |e2〉 since the energy E2 is measured at time t2. The time
evolution afterwards is then simply

|ψ(t)〉 = e−iE2t/~|e2〉.

(where the overall phase is immaterial).

(c) Much as in part (a), the wavefunction for t3 < t < t4 is

|ψ(t)〉 =
1√
2

(

e−iE1(t−t3)/~|e1〉 + e−iE2(t−t3)/~|e2〉
)

=
1√
2
e−iE1(t−t3)/~

(

|e1〉 + e−i(E2−E1)(t−t3)/~|e2〉
)

Clear, for |ψ(t = t4)〉 ∼ | − b〉, we must have e−i∆t(E2−E1)/~ = −1, i.e. for
∆t = π~(2n+ 1)/(E2 − E1), for integer n.
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#6 : UNDERGRADUATE QUANTUM MECHANICS

PROBLEM: Find the tightest upper bound on the ground state energy of the
one-dimensional harmonic oscillator by using a trial wave function of the
form

ψ(x) =
D

x2 + a2

where D is to be determined by normalization and a is an adjustable pa-
rameter.

(You may express your answers in terms of dimensionless integrals.)

SOLUTION:

To solve this problem, we use the variational principle that the ground state
energy is given by

E0 ≤
∫

∞

−∞

ψ∗(x)Ĥψ(x)

for the trial wave function ψ(x) given.

First, fix D(a) by normalization:

∫

∞

−∞

dx|ψ(x)|2 =

∫

∞

−∞

dx
D2

(x2 + a2)2
= 1

D2

a3

∫

∞

−∞

dy
1

(1 + y2)2
= 1.

⇒ D2 = a3/I1, where I1 =

∫

∞

−∞

dy
1

(1 + y2)2
.

Next, compute the expectation value of Ĥ = − ~
2

2m

∂2

∂x2
+

1

2
kx2 using ψ:

E0 ≤ D2(a)

{

∫

∞

−∞

dx
1

x2 + a2

(

− ~
2

2m

∂2

∂x2

1

x2 + a2

)

+

∫

∞

−∞

dx
1
2kx

2

(x2 + a2)2

}

= D2(a)

{

~
2

2m

∫

∞

−∞

dx

( −2x

(x2 + a2)2

)2

+
k

2

∫

∞

−∞

dx
x2

(x2 + a2)2

}

= D2(a)

{

~
2

2ma5

∫

∞

−∞

dy
4y2

(1 + y2)4
+

k

2a

∫

∞

−∞

dy
y2

(1 + y2)2

}

.
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Using the result for D2(a), we have

E0 ≤ I−2
1 ·

{

~
2

2ma2
I2 +

ka2

2
I3

}

,

where

I2 =

∫

∞

−∞

dy
4y2

(1 + y2)4
and I3 =

∫

∞

−∞

dy
y2

(1 + y2)2
.

Minimizing the expression for E0 with respect to a, we have

0 =
δE0

δa

∣

∣

∣

∣

a=a∗
∝ − ~

2

m(a∗)3
I2 + ka∗ I3

or a∗ =

(

~
2

mk

I2
I3

)1/4

.
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#7 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: The internal energy of a non-relativistic Fermi gas at low temper-
atures is given by the expression

U =
3

5
NεF

[

1 +
5π2

12

(

kT

εF

)2

+ · · ·
]

,

where εF is the Fermi energy of the gas. Note that εF ∝ (N/V )2/3.

(a) Using the expression for U (and your knowledge of Thermodynamics),
derive the corresponding expressions for the pressure P and the Helmholtz
free energy F of the gas.

(b) Using these expressions for P and F , show that the corresponding ex-
pression for the chemical potential µ of the gas is

µ = εF

[

1 − π2

12

(

kT

εF

)2

+ · · ·
]

,

SOLUTION:

(a) To determine F , we need S which can be obtained from CV .

CV ≡
(

∂U

∂T

)

V

=

(

∂U

∂T

)

εF

because ε = f(N/V ).

∴ CV =
3

5
N εF · 5π2

12
· 2k2T

ε2F
+ · · · =

π2

2
Nk

kT

εF
,

hence S =

∫ T

0

CV dT

T
=
π2

2
Nk

kT

εF
+ · · ·

Thus F = U − TS =
3

5
NεF

[

1 − 5π2

12

(

kT

εF

)2

+ · · ·
]

P can be determined from P = −(∂F/∂V )T or P = −(∂U/∂V )S . In either
case, we need to know how εF depends on V . With εF ∝ V −2/3, we get

P =
2

3

U

V
=

2

5
NεF

[

1 +
5π2

12

(

kT

εF

)2

+ · · ·
]

.

(b) Finally, µ =
G

N
=
F + PV

N
= εF

[

1 − π2

12

(

kT

εF

)2

+ · · ·
]

.
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#8 : UNDERGRADUATE STATISTICAL MECHANICS

PROBLEM: The “surface waves” in a low-temperature Bose liquid, upon quan-
tization, behave like a two-dimensional gas of non-interacting excitations
called “ripplons”. Like potons or phonons, these excitations are indefinite

in number and obey Bose-Einstein statistics. Their energy-momentum rela-
tion, however, is ε = a · p3/2, where a is a constant.

Find the temperature dependence of the total energy per unit area of these
excitations.

SOLUTION:

An indefinite N implies that the chemical potential of this gas is zero.

∴ U =

∫

∞

0

ε g(ǫ)dǫ

eε/kT − 1
.

g(ε) may be obtained by using the fact that p = (ε/a)2/3 and employing the
phase-space expression

∫

dx dy dpx dpy

h2
f(ǫ(p)) = A

∫

∞

0

2πpdp

h2
f(ǫ(p))

=
2πA

h2

∫

∞

0

( ε

a

)2/3
·
(

1

a

)2/3 2

3
ε−1/3f(ǫ)dε

=
4πA

3h2a4/3
ε1/3 dε.

Thus,
U

A
=

4π

3h2a4/3

∫

∞

0

ε4/3 dε

eε/kT − 1
∝ T 7/3.
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#9 : UNDERGRADUATE PHYSICAL ESTIMATES

PROBLEM:

(a) The Sun may be regarded as a black-body radiator, of radius R⊙ ≈
7 × 108 m, at a temperature 6, 000 K. Calculate the “solar radiative flux”
per unit area per unit time as observed on the surface of the Earth. The
distance between the Sun and the Earth is D = 1.5 × 1011 m.

(b) Next, suppose that the Earth maintains itself in a steady state by con-
tinually radiating away into space as much energy as it receives from the
Sun. If the Earth too were regarded a blackbody radiator, what would its
steady-state temperature be?

SOLUTION:

(a) Radiative energy emitted by the Sun per unit time is σT 4, where is
the Stefan-Boltzmann constant σ ≈ 5.67 × 10−8 W/m2 · K4 and T the tem-
perature of the Sun. So the total rate of the solar emission is σT 4 · 4πR2

⊙.
The “solar radiation flux” observed on the Earth is then given by σT 4 ·
4πR2

⊙/(4πD
2), where D is the Sun-Earth distance. We thus get

(5.67×10−8 W m−2K−4)×(6, 000 K)4×(7×108 m)2/(1.5×1011 m)2 ≈ 1, 600 W/m2.

(b) The total power received by the Earht is 1, 600 W/m2 × the corss-
sectional area of the Earth, πr2E , rE being the Earth’s radius. If the Earth
emits into space the same amount of power as it receives from the Sun, then
its steady-state temperature Tss would be given by the condition

σTss × 4πr2E = 1, 600 W/m2 × πr2E .

Thus,

Tss =

(

1, 600 W/m2

4 × 5.67 × 10−8 W m−2K−4

)1/4

= 290 K.
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#10 : UNDERGRADUATE PHYSICAL ESTIMATES

PROBLEM: As shown in the figure, a capacitor has a thin layer of liquid helium
on one of the metal plates. The electric field in the space between the liquid
layer and the other plate is E = 100 volts/meter, pointing upwards. An
electron is trapped on the upper liquid surface by the electric field. The
helium surface may be regarded as impenetrable by the electron. Estimate
the order of magnitude of the uncertainty in the vertical position of the
electron in Angstroms without explicitly solving the Schrödinger equation.
[ You may ignore any possible image charge effects.]

liquid helium

electron E=100V/m

SOLUTION: Let the vertical distance from the liquid surface be z. The po-
tential is given

V (z) = +∞, if z < 0,

= eEz, if z > 0.

The ground state energy is

E ∼ (∆p)2

2m
+ eE∆z

∼ ~
2

2m(∆z)2
+ eE∆z,

where the momenutm uncertainty∆p is ∼ ~/∆z, the uncertainty in position.

Minimization of the ground state energy leads to

∆z = (~2/meE)1/3

The numerical estimate is

∆z = aB

(

~
2

ma2
B

1

eEaB

)1/3

= 0.53Å

(

27.2 eV

10−9 eV/Å 0.53Å

)1/3

= 103Å.



INSTRUCTIONS

PART II : PHYSICS DEPARTMENT EXAM

Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
of any problem. You are to do seven (7) of the ten (10) problems.

The questions are grouped in five Sections. You must attempt at least one
question from each of the five (5) Sections. ( E.g. Section 1: one or both of
problem 1 and problem 2.) Credit will be assigned for seven (7) questions
only. Circle the seven problems you wish to be graded:

SPECIAL INSTRUCTIONS DURING EXAM

1. You should not have anything close to you other than your pens &
pencils, calculator and food items. Please deposit your belongings
(books, notes, backpacks, etc.) in a corner of the exam room.
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a. Write the problem number and your ID number on each sheet;

b. Write only on one side of the paper;

c. Start each problem on the attached examination sheets;

d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.
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#11 : GRADUATE CLASSICAL MECHANICS

PROBLEM: Find the frequencies of the two normal modes of small oscillations
for the coupled mass system shown below, consisting of a simple pendulum
of length l and mass m attached to a block of mass M that slides in one
dimension on a frictionless table and is attached to a wall by a spring of
constant k.

M

m

l

k
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#12 : GRADUATE CLASSICAL MECHANICS

PROBLEM: A one-dimensional mechanical continuum is described by the La-
grangian density

L = 1

2
φ2

t + r φ2

x − 1

2
φ2

xx − 1

2
∆φ2 ,

where φt = ∂φ/∂t, φxx = ∂2φ/∂x2, etc. Here the field, space, and time values
are made dimensionless, with r and ∆ being dimensionless parameters.

(a) Find the equation of motion for φ(x, t).

(b) Show that wave solutions exist, and find each branch of the dispersion
relation ω(k).

(c) What conditions on r and ∆ guarantee stability? It may be useful to
make a sketch of ω2 versus k2.

(d) When (r,∆) lie in a regime of instability, what is the wavelength for the
maximally unstable (i.e. largest growth rate) wave solution?
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#13 : GRADUATE ELECTROMAGNETISM

PROBLEM: A solid sphere of radius R and conductivity σ is immersed in a
uniform external magnetic field, B = ẑB0. At t = 0, the external magnetic
field is suddenly switched off. Initially the magnetic field remains “frozen”
into the conducting sphere, but then slowly decays.

(a) Estimate the time scale for the decay in terms of the parameters given
and universal constants. (You do not need to solve any equation explicitly.)

(b) Derive the B-field inside and outside the sphere immediately after the
external field is switched off. (For convenience, you may express your answer
in term of a potential function.)

(c) Using your result to part (b), calculate the heat produced during the
decay process.
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#14 : GRADUATE ELECTROMAGNETISM

PROBLEM: Two halves of a thin, conducting, spherical shell are separated by
a thin insulating layer. An oscillating potential is applied to the two halves,
so that the halves have potential +V cosωt and −V cosωt. The radius of
the shell is R, where R≪ c/ω. Calculate the time-averaged power radiated
by this system.
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#15 : GRADUATE QUANTUM MECHANICS

PROBLEM: In a heavy atom, the radius of the innermost (“K” shell) electron
orbital is only about 100 times larger than the nuclear radius R. Its energy
therefore exhibits a detectable shift ∆E due to the finite size of the nucleus.
The shift ∆E is expected to depend on both the atomic number Z and the
atomic weight A, with the latter arising from the dependence of the nuclear
radius R on A:

R = r
0
A1/3 , r

0
= 2.3 × 10−5 a

B
,

where a
B

= ~
2/me2 is the Bohr radius.

In this problem, you are asked to compute the “isotope shift” ∆E(A) −
∆E(A′) for two different isotopes of thallium (Z = 81) with atomic weights
A = 203 and A′ = 205. (This isotope shift can be readily measured as a
shift in the K edge of X-ray energy.) You may compute ∆E using first
order perturbation theory, assuming that the nucleus is a sphere of uniform
charge density, and neglecting screening effects due to other electrons. The
exponential envelope of the hydrogenic wavefunctions can also be neglected
on the scale of the nucleus.
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#16 : GRADUATE QUANTUM MECHANICS

PROBLEM: The identical plane rotators with coordinates θ1 and θ2 are gov-
erned by the Hamiltonian

H =
A

~2
(p2

θ1
+ p2

θ2
) −B cos(θ1 − θ2)

where A, B are positive constants. Note that θ1, θ2 are angular variables,
i.e., θi = θi + 2π. Determine the energy eigenvalues and eigenfunctions to
linear order in B for B ≪ A. To this end,

(a) Make a linear change of coordinates so that the problem separates (that
is, neither the kinetic term nor the perturbation (B-term) couple the two
variables).

(b) Find the eigenvalues and eigenstates of the unperturbed Hamiltonian
(B = 0); list the degeneracies of this solution.

(c) For any two unperturbed states ψ and χ, compute 〈χ|V |ψ〉 where
V = −B cos(θ1 − θ2). (Hint: Use the eigenstates expressed in terms of

the variables introduced in part (a), but switch back to the original variables

to carry out the integrals).

(d) Use the above result to determine the shift in energy eigenvalues. Be
mindful of diagonalizing the matrix of energy shifts for degenerate unper-
turbed levels, as needed.
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#17 : GRADUATE STATISTICAL MECHANICS

PROBLEM: The rotational states of a diatomic molecule are characterized by
energy eigenvalues

ǫℓ = ℓ(ℓ+ 1)
~

2

2I
, ℓ = 0, 1, 2, ...

I is the moment of inertia of the molecule.

Set up the partition function of this molecule. At high temperatures, com-
pute the specific heat (per such molecule), Crot, to leading order correction
from the classical result Crot = kB, where kB is the Boltzmann constant.

Hint: It will be useful to know the following formula (known as the Euler-
MacLaurin formula),

∞∑
ℓ=0

f(ℓ+ 1

2
) =

∫ ∞

0

f(x)dx+
1

24
f ′(0) −

7

5760
f ′′′(0) + . . . ,

where f(x) = x e−αx2

for a positive constant α.
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#18 : GRADUATE STATISTICAL MECHANICS

PROBLEM: Consider N classical spins of s = {±1} on a one-dimensional
lattice. The interaction of spins on site m and n (denoted by sm and sn

respectively) is given by the exchange term Jmn, so that the total energy of
a given configuration of spins {si} is

H = −
1

2

N∑
m,n=1

Jmn smsn.

(a) For nearest-neighbor coupling, i.e., Jmn = J δm,n±1, show that there
cannot be spontaneous magnetization in the thermodynamic limit at any
finite temperature T > 0.

Hint: You do not need to solve the full problem to reach this conclusion;
it suffices to consider the energy and entropy of low energy, large scale
excitations that may destabilize the ground state.

(b) Suppose the exchange term in H above has the form Jm6=n = J/|m−n|σ

where σ is a positive real number. Show that spontaneous magnetization
may occur at some finite temperature Tc > 0 only if σ is smaller than a
threshold value σc. Find the value of σc. (You do not need to determine the
value of Tc.)
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#19 : GRADUATE MATHEMATICAL PHYSICS

PROBLEM: Find an analytic expression for the sum

F (x) =
∞∑

n=−∞

1

(n2 + x2)2
,

where x is real. Hint: It will be useful to consider the pole structure of the
function

f(ω) =
1

e2πω − 1
.
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#20 : GRADUATE OTHER

PROBLEM: Consider a random walk of N steps in one-dimension. Suppose
that the steps are completely uncorrelated, and that the probability distri-
bution of the displacement x of a single step is given by

ρ(x) ∝
1

1 + |x|α
, −∞ < x <∞

where α > 0 is a constant. We want to know the probability distribution
P (R;N) for the total displacement R =

∑N
n=1

xn for N ≫ 1, with xn being
the displacement of the nth step.

(a) Write down the functional form of P (R;N) expected from the Central
Limit Theorem up to a normalization constant. Express parameter(s) of P
in terms of integral(s) of ρ. (You do not need to derive the Central Limit
Theorem.) For what range of α is the result (and hence the Central Limit
Theorem) valid?

(b) Compute the distribution P (R;N) directly from ρ(x) for α = 2, and find
its explicit form including normalization constant. How far does a walker
typically go after N steps? Compare your result to that of part (a) and
comment.
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Please take a few minutes to read through all problems before starting the
exam. Ask the proctor if you are uncertain about the meaning of any part
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d. If multiple sheets are used for a problem, please make sure you
staple the sheets together and make sure your ID number is writ-
ten on each of your exam sheets.

Colored scratch paper is provided and may be discarded when the exami-
nation is over. At the conclusion of the examination period, please staple
sheets from each problem together. Submit this top sheet to one of the
proctors, who will check that you have circled the correct problem numbers
above. Then submit your completed exam, separated into stacks according
to problem number.
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#11 : GRADUATE CLASSICAL MECHANICS

PROBLEM: Find the frequencies of the two normal modes of small oscillations
for the coupled mass system shown below, consisting of a simple pendulum
of length l and mass m attached to a block of mass M that slides in one
dimension on a frictionless table and is attached to a wall by a spring of
constant k.

M

m

l

k

SOLUTION:

• The Kinetic energy of the block is Mẋ2/2.

• Kinetic energy of the pendulum is m(ẋ− lθ̇)2/2.

• Potential energy of the spring-mass system is kx2/2.

• Potential energy of pendulum, for θ ≪ 1 is mglθ2/2.

So the Lagrangian is

L = 1
2Mẋ2 +m(ẋ− 1

2 lθ̇)
2 − 1

2kx
2 − 1

2mglθ
2.

We want to make a linear change of variables into new variables y1 and y2

that puts the above Lagrangian into the form

L = 1
2

(
ẏ2
1 + ẏ2

2

)
− 1

2

(
ω2

1y
2
1 + ω2

2y
2
2

)
,

from which we read the frequencies of the normal modes ω1 and ω2.

To accomplish this we make a sequence of transformations. First let

z1 =
√
Mx and z2 =

√
m(x− lθ).
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In terms of these

L = 1
2(ż2

1 + ż2
2) − k

2M z2
1 − mg

2l

(
z1√
M

− z2√
m

)2
.

Note that the potential term is, in matrix notation

V = 1
2





z1

z2









k
M + mg

Ml
g
l

√
m
M

g
l

√
m
M

g
l




(
z1 z2

)

We need to diagonalize this by making one last coordinate transformation,
a rotation from the (z1, z2) plane to the (y1, y2) plane. But since we are only
asked to compute the frequencies of the normal modes we need only find the
eigenvalues (and not the eigenvectors) of the 2 × 2 matrix. Computing the
characteristic equation gives:

(
k
M + mg

Ml − λ
)
(

g
l − λ

)

− g2

l2
m
M = 0

The solutions are elementary,

ω2
1,2 = 1

2

(

k
M +

(
1 + m

M

) g
l ±

√
(

k
M +

(
1 + m

M

) g
l

)2 − 4 gk
lM

)

Some simple checks (not required). For a very stiff spring, k → ∞, we have
solutions

ω2
1 ≈ k

M and ω2
2 ≈ g

l

These just correspond to uncoupling the system! Note also that this is also
the limit g → 0. For g = 0 one mode (ω2) vanishes. This just corresponds
to the pendulum executing uniform circular motion. Another check is the
opposite limit, that of a weak spring, k → 0:

ω2
1 ≈ k

m+M and ω2
2 ≈

(
1 + m

M

) g
l

For k = 0, no spring at all, you expect a normal mode of zero frequency,
corresponding to translation of the whole system (and you see from above
that ω1 = 0 at k = 0). If k is small but not zero then this mode becomes an
oscillation of the block and pendulum together.
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#12 : GRADUATE CLASSICAL MECHANICS

PROBLEM: A one-dimensional mechanical continuum is described by the La-
grangian density

L = 1
2φ

2
t + r φ2

x − 1
2 φ

2
xx − 1

2 ∆φ2 ,

where φt = ∂φ/∂t, φxx = ∂2φ/∂x2, etc. Here the field, space, and time values
are made dimensionless, with r and ∆ being dimensionless parameters.

(a) Find the equation of motion for φ(x, t).

(b) Show that wave solutions exist, and find each branch of the dispersion
relation ω(k).

(c) What conditions on r and ∆ guarantee stability? It may be useful to
make a sketch of ω2 versus k2.

(d) When (r,∆) lie in a regime of instability, what is the wavelength for the
maximally unstable (i.e. largest growth rate) wave solution?

SOLUTION:

(a) The Euler-Lagrange equation is:

∂L
∂φ

− ∂

∂t

∂L
∂φt

− ∂

∂x

∂L
∂φx

+
∂2

∂x2

∂L
∂φxx

= 0 .

Thus,
∆φ+ φtt + 2r φxx + φxxxx = 0 .

(b) The wave equation is linear, hence we can superpose solutions to get
another solution. We try a wave solution of the form

φ(x, t) = Aei(kx−ωt) .

The equation of motion then yields

ω2 = k4 − 2rk2 +∆ .

There are two branches to the dispersion, corresponding to taking the posi-
tive or negative square root for ω2:

ω±(k) = ±
√

k4 − 2rk2 +∆ .
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(c) We can factorize and write

ω2 = (k2 − k2
−)(k2 − k2

+) ,

where
k2
± = r ±

√

r2 −∆ .

The system is stable provided that Imω±(k) < 0 for both branches. Note
that ω2

±(0) = ∆, so there is always instability when ∆ < 0. The condition
for stability is:

stability ⇐⇒ ∆ > 0 , r <
√
∆ .

(d) The most unstable wavevector k is the one which makes Imω(k) the
most negative. Thus, we want ω2 to be negative and a minimum with respect
to k2. We then differentiate,

∂ω2

∂(k2)
= −2r + 2k2 .

If ∆ < 0, then the most unstable wavevector occurs at k∗ = 0 if r < 0 and
at k∗ =

√
r if r > 0 (see figure). For ∆ > 0, instability requires r >

√
∆,

and the maximally unstable wavevector occurs at k∗ =
√
r. Note k∗ = 0

means λ = ∞ and k∗ =
√
r means λ = 2π/

√
r.
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#13 : GRADUATE ELECTROMAGNETISM

PROBLEM: A solid sphere of radius R and conductivity σ is immersed in a
uniform external magnetic field, B = ẑB0. At t = 0, the external magnetic
field is suddenly switched off. Initially the magnetic field remains “frozen”
into the conducting sphere, but then slowly decays.

(a) Estimate the time scale for the decay in terms of the parameters given
and universal constants. (You do not need to solve any equation explicitly.)

(b) Derive the B-field inside and outside the sphere immediately after the
external field is switched off. (For convenience, you may express your answer
in term of a potential function.)

(c) Using your result to part (b), calculate the heat produced during the
decay process.

SOLUTION:

(a) For a slow decay, we can use the quasi-static approximation,

∇2
B =

4πσ

c2
∂B

∂t
.

Taking the estimates ∇2
B ∼ B0

R2
and

∂B

∂t
∼ B0

τ
, we have τ ∼ 4πσ

c2
R2.

(b) The field inside the sphere is B = ẑB0

To find dipole field outside the sphere, note that ∇× B = 0 so B = ∇φ.

∇ · B = 0 ⇒ ∇2φ = 0.

R 

B 

B 

Try the dipole solution φ(r, θ) =
A

r2
cos θ for r > R.
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At surface, require that normal component of B is continuous, i.e.,

∂φ

∂r

∣
∣
∣
∣
R

︸ ︷︷ ︸

−2A cos θ
R3

= B0 ẑ · r̂ = B0 cos θ ⇒ A = −B0R
3

2

(c) The heat produced is equal to the magnetic field intensity for the sphere
with frozen in magnetic field.

Heat = WM =
B2

0

8π
· 4

3
πR3

︸ ︷︷ ︸

inside

+

∫ ∞

R
r2dr

∫ π

0
2π sin θdθ

(∇φ)2

8π
︸ ︷︷ ︸

outside

=
B2

0R
3

4
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#14 : GRADUATE ELECTROMAGNETISM

PROBLEM: Two halves of a thin, conducting, spherical shell are separated by
a thin insulating layer. An oscillating potential is applied to the two halves,
so that the halves have potential +V cosωt and −V cosωt. The radius of
the shell is R, where R≪ c/ω. Calculate the time-averaged power radiated
by this system.

SOLUTION: Since dipole radiation dominates here, it is necessary to calculate
the dipole moment for the configuration of electric potential, specified at the
conducting shell,

ϕ(R, θ) =

{
+V cosωt 0 6 θ 6 π/2
−V cosωt π/2 6 θ 6 π

R

r

z

 

We can use electrostatics for this purpose since R≪ c/ω.

For r > R, the electric potential can be generally written as

φ(r, θ) =
∑

ℓ

Aℓ
Pℓ[cos θ]

rℓ+1

in spherical coordinate system. Compared to the potential of an ideal dipole,

φdipole =
~r · ~P
r3

=
P cos θ

r2
,

the dipole moment is given by P = A1 since P1[cos θ] = cos θ.
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To find the dipole moment, we note

∫ π

0
sin θdθP1[cos θ] · ϕ(R, θ) =

∫ π

0
sin θdθP1[cos θ] · φ(R, θ)

V cosωt

{
∫ π/2

0
sin θdθ cos θ −

∫ π

π/2
sin θdθ cos θ

}

=
A1

R2

∫ π

0
dθ sin θ cos2 θ

V cosωt

{[

−cos2 θ

2

]π/2

0

−
[

−cos2 θ

2

]π

π/2

}

=
A1

R2

[

−cos3 θ

3

]π

0

V cosωt

{

+
1

2
+

1

2

}

= +
A1

R2

2

3

So the dipole moment is

P =
3

2
R2 V cosωt.

Average power irradiated by a dipole is then

〈Power Radiated〉time =

〈

2

3

| ~̈P |2
c3

〉

=
2

3

9

4

R4V 2ω4

c3
〈cos2 ωt〉

=
3

4

R4V 2ω4

c3
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#15 : GRADUATE QUANTUM MECHANICS

PROBLEM: In a heavy atom, the radius of the innermost (“K” shell) electron
orbital is only about 100 times larger than the nuclear radius R. Its energy
therefore exhibits a detectable shift ∆E due to the finite size of the nucleus.
The shift ∆E is expected to depend on both the atomic number Z and the
atomic weight A, with the latter arising from the dependence of the nuclear
radius R on A:

R = r0A
1/3 , r0 = 2.3 × 10−5 a

B
,

where a
B

= ~
2/me2 is the Bohr radius.

In this problem, you are asked to compute the “isotope shift” ∆E(A) −
∆E(A′) for two different isotopes of thallium (Z = 81) with atomic weights
A = 203 and A′ = 205. (This isotope shift can be readily measured as a
shift in the K edge of X-ray energy.) You may compute ∆E using first
order perturbation theory, assuming that the nucleus is a sphere of uniform
charge density, and neglecting screening effects due to other electrons. The
exponential envelope of the hydrogenic wavefunctions can also be neglected
on the scale of the nucleus.

SOLUTION: The first order of business is computing the electrostatic po-
tential due to a uniform charge distribution. From ∇2φ = −4πρ we have
φ(r) = −2π

3 ρr
2 + φ(0). This is valid up for 0 ≤ r ≤ R, where R is the

radius of the uniform spherical charge distribution. For r > R, we have
φ(r) = Ze/r, where Ze = 4π

3 ρR
3 is the total nuclear charge. Matching at

r = R then gives

φ(r) =







Ze
R

(
3
2 − r2

2R2

)

for 0 ≤ r ≤ R

Ze
r for r ≥ R .

The potential energy for the K shell electron, neglecting screening (since
the K shell is the innermost) is V (r) = −eφ(r).

For the potential V0(r) = −Ze2/r (for all r), the ground state eigenfunction
and energy are given by

ψ0(r) =
(Z/a

B
)3/2

√
π

e−Zr/a
B , E0 = −(Ze)2

2a
B

.
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We now define the perturbation potential

∆V (r) = V (r) − V0(r) =







Ze2

R

(
r2

2R2 − 3
2 + R

r

)

for 0 ≤ r ≤ R

0 for r > R .

The energy shift, to first order in perturbation theory, is then

∆E =
〈
ψ0

∣
∣∆V

∣
∣ψ0

〉

= 4π

R∫

0

dr r2
Z3

πa3
B

e−2Zr/a
B

Ze2

R

(
r2

2R2
− 3

2
+
R

r

)

≈ 4
5Z

4

(
R

a
B

)2

·
(
e2

2a
B

)

,

where the last line follows if we approximate e−2Zr/a
B ≈ 1 inside the inte-

grand. Recall e2/2a
B

= 13.6 eV. Setting Z = 81 and A = 203, and invoking

R = r0A
1/3, we find

∆E(A) = 8.25 eV .

The isotopic energy shift in the X-ray K edge is then

∆E(A) −∆E(A′) ≃ d∆E

dR

dR

dA
∆A

=
2

3

∆A

A
∆E

= −54.2 meV ,

since ∆A = A′ −A = −2.
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#16 : GRADUATE QUANTUM MECHANICS

PROBLEM: The identical plane rotators with coordinates θ1 and θ2 are gov-
erned by the Hamiltonian

H =
A

~2
(p2

θ1
+ p2

θ2
) −B cos(θ1 − θ2)

where A, B are positive constants. Note that θ1, θ2 are angular variables,
i.e., θi = θi + 2π. Determine the energy eigenvalues and eigenfunctions to
linear order in B for B ≪ A. To this end,

(a) Make a linear change of coordinates so that the problem separates (that
is, neither the kinetic term nor the perturbation (B-term) couple the two
variables).

(b) Find the eigenvalues and eigenstates of the unperturbed Hamiltonian
(B = 0); list the degeneracies of this solution.

(c) For any two unperturbed states ψ and χ, compute 〈χ|V |ψ〉 where
V = −B cos(θ1 − θ2). (Hint: Use the eigenstates expressed in terms of

the variables introduced in part (a), but switch back to the original variables

to carry out the integrals).

(d) Use the above result to determine the shift in energy eigenvalues. Be
mindful of diagonalizing the matrix of energy shifts for degenerate unper-
turbed levels, as needed.

SOLUTION:

(a) The Schrödinger equation is

[

−A
(
∂2

∂θ2
1

+
∂2

∂θ2
2

)

−B cos(θ1 − θ2)

]

ψ = E ψ.

It is convenient to change variables to x = θ1 + θ2 and y = θ1 − θ2. Then

[

−2A

(
∂2

∂x2
+

∂2

∂y2

)

−B cos y

]

ψ = E ψ.

Note that with the new variables, the two coordinates are no longer coupled.

(b) For B = 0, we have

[

−2A

(
∂2

∂x2
+

∂2

∂y2

)]

ψ = E ψ.
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This is the Schrödinger equation for a “free particle”, with

ψ = C eiαx eiβy

= C ei(α+β)θ1 ei(α−β)θ2 .

Since θi is periodic, α±β must be integers; hence 2α and 2β must be integers
and both even or both odd. So we have

ψ = C ei
m
2 x ei

n
2 y, m, n ∈ Z, and m− n ∈ 2Z.

Normalization condition
∫ 2π
0 dθ1

∫ 2π
0 dθ2|ψ(θ1, θ2)|2 = 1 yields C = (2π)−1.

Inserting the solution back into the Schrödinger equation, we find

E(0)
m,n =

A

2
(m2 + n2) and ψ(0)

m,n = 1
2πe

i
m
2 x ei

n
2 y

Here the superscript (0) reminds us that these are unperturbed eigenvalues
and eigenstates. Note the degeneracies:

E(0)
m,n = E

(0)
−m,n = E

(0)
m,−n = E

(0)
−m,−n.

(c) As instructed we compute the exepctation value of the perturbation V .
Use the braket notation ψm,n = |m,n〉.

〈m′, n′|V |m,n〉 =

∫ 2π

0
dθ1

∫ 2π

0
dθ2

(

− B

(2π)2

)

cos(θ1−θ2) ei
∆m
2 (θ1+θ2)ei

∆n
2 (θ1−θ2)

where ∆m = m−m′ and ∆n = n− n′.

The integral is trivially done by noting that cos(θ1 − θ2) = 1
2(ei(θ1+θ2) +

e−i(θ1+θ2)), and gives zero unless ∆m = 0 and ∆n = ±1. In the latter case,
the integral is

− B

(2π)2

∫ 2π

0
dθ1

∫ 2π

0
dθ2

1

2
= −B

2
.

So, 〈m′, n′|V |m,n〉 = −B
2
δm′m

(

δ∆n
2 ,−1

+ δ∆n
2 ,+1

)

.

(d) There is no diagonal shift in energy, ∆E. But for fixed m and n = ±1,
we have a 2 × 2 system to diagonalize.

〈m,±1|V |m,±1〉 = −B
2

(
0 1
1 0

)

.
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The eigenvalues are

det

(
−λ 1
1 λ

)

= λ2 − 1 = 0 → λ = ±1,

and eigenvectors

(
0 1
1 0

)

·
(
u
v

)

= ±
(
u
v

)

⇒ v = ±u ⇒ 1√
2

(|m, 1〉 ± |m,−1〉) ,

with energy shifts ∆Em,±1 = −B
2 · (±1).
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#17 : GRADUATE STATISTICAL MECHANICS

PROBLEM: The rotational states of a diatomic molecule are characterized by
energy eigenvalues

ǫℓ = ℓ(ℓ+ 1)
~

2

2I
, ℓ = 0, 1, 2, ...

I is the moment of inertia of the molecule.

Set up the partition function of this molecule. At high temperatures, com-
pute the specific heat (per such molecule), Crot, to leading order correction
from the classical result Crot = kB, where kB is the Boltzmann constant.

Hint: It will be useful to know the following formula (known as the Euler-
MacLaurin formula),

∞∑

ℓ=0

f(ℓ+ 1
2) =

∫ ∞

0
f(x)dx+

1

24
f ′(0) − 7

5760
f ′′′(0) + . . . ,

where f(x) = x e−αx2

for a positive constant α.

SOLUTION: The partition function is

Q =
∞∑

ℓ=0

gℓe
−ǫℓ/kBT

where gℓ = 2ℓ+1 is the multiplicity of the state ℓ. In term of the temperature
scale Θ = ~

2/(2IkB), the partition function Q can be expressed as

Q =
∞∑

ℓ=0

(2ℓ+ 1)e−ℓ(ℓ+1)Θ/T

= 2 e
1
4Θ/T

∞∑

ℓ=0

(

ℓ+
1

2

)

e−(ℓ+
1
2)2Θ/T .
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Using Euler-Maclaurin formula as given with α = Θ/T , we get

Q = 2 eα/4

[
1

2α
+

1

24
+

7α

960
+ . . .

]

=
1

α
eα/4

[

1 +
α

12
+

7α2

480
+ . . .

]

∴ lnQ = − lnα+
α

4
+ ln

[

1 +
α

12
+

7α2

480
+ . . .

]

= − lnα+
α

4
+

[
α

12
+

7α2

480
+ . . .− α2

288
− . . .

]

= − lnα+
α

3
+
α2

90
+ . . .

Using α = Θ/T , we can find the free energy A and its derivatives as:

A = −kBT lnQ = −kBT ln(T/Θ) − 1

3
kBΘ − 1

90
kB
Θ

T
+ . . . ,

∂A

∂T
= −kB ln(T/Θ) − k +

1

90
kB

(
Θ

T

)2

+ . . .

∂2A

∂T 2
= −kB

T
− 1

45

kΘ2

T 3
+ . . .

Finally, Crot = −T ∂
2A

∂T 2
= kB

(

1 +
1

45

Θ2

T 2
+ . . .

)

.
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#18 : GRADUATE STATISTICAL MECHANICS

PROBLEM: Consider N classical spins of s = {±1} on a one-dimensional
lattice. The interaction of spins on site m and n (denoted by sm and sn

respectively) is given by the exchange term Jmn, so that the total energy of
a given configuration of spins {si} is

H = −1

2

N∑

m,n=1

Jmn smsn.

(a) For nearest-neighbor coupling, i.e., Jmn = J δm,n±1, show that there
cannot be spontaneous magnetization in the thermodynamic limit at any
finite temperature T > 0.

Hint: You do not need to solve the full problem to reach this conclusion;
it suffices to consider the energy and entropy of low energy, large scale
excitations that may destabilize the ground state.

(b) Suppose the exchange term in H above has the form Jm6=n = J/|m−n|σ
where σ is a positive real number. Show that spontaneous magnetization
may occur at some finite temperature Tc > 0 only if σ is smaller than a
threshold value σc. Find the value of σc. (You do not need to determine the
value of Tc.)

SOLUTION:

(a) The nearest-neighbor Ising model can be solved exactly using the trans-
fer matrix method. However, to show the absence of spontaneous magneti-
zation, the following consideration suffices.

• At T = 0, the ground state is clearly one with all spins taking on the
same value (+1 or −1).

• Low energy excitations are “kink” configurations where a contiguous
segment of the spins take on one value and the rest of the spins take
on the opposite value, say, sm = +1 for 1 < m < m∗, and sm = −1 for
m∗ < m < N . The energy cost of such an excitation is ∆Ekink = +2J
for all kink position m∗ as long as it is not at the two ends of the 1d
lattice.
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• Since the kink configuration has a degeneracy of the order N , the
entropy gain is ∆S = logN . The total free energy cost of the kink
configuration is

∆Fkink = 2J − kBT logN

which is negative at any finite temperature T > 0 for a sufficiently large
N . Hence the ground states with uniform magnetization are unstable,
replaced by kink configurations which have zero average magnetiza-
tion.

(b) Continuing along the line of consideration given in part (a), we need to
estimate the energy cost of a kink configuration for the non-local coupling
Jmn —

∆Ekink ∼ J

N∑

n=m∗+1

m∗−1∑

m=1

1
|m−n|σ . (1)

For kink position not too close to the ends of the system, say N/4 . m∗ .

3N/4, and forN ≫ 1, the sums in Eq. (2) may be approximated by integrals,
yielding the result

∆Ekink ∼ O(J N2−σ)

to the leading order in N . This energy is larger than the entropy gain of
kink formation, still of the order logN , as long as σ < 2. Hence the ground
state is stable and spontaneous magnetization occurs provided σ < σc = 2.
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#19 : GRADUATE MATHEMATICAL PHYSICS

PROBLEM: Find an analytic expression for the sum

F (x) =

∞∑

n=−∞

1

(n2 + x2)2
,

where x is real. Hint: It will be useful to consider the pole structure of the
function

f(ω) =
1

e2πω − 1
.

SOLUTION:

Consider the function

f(ω) =
1

e2πω − 1
.

Clearly f(ω) has a simple pole at ω = in for all integer n, with residue
(2π)−1. Thus, for any function H(ω) which is analytic along the imaginary
axis, we have

∞∑

n=−∞
H(in) =

∮

C

dω

i
f(ω)H(ω)

= −2π
∑

Im(ω) 6=0

Res
[

f(ω)H(ω)
]

.

In our case, we have

H(ω) =
1

(ω2 − x2)2
,

and the poles lie at ω = ±x. Since H(ω) has a double pole at these points,
we must evaluate the residues according to

Res(+x) =
∂

∂ω

∣
∣
∣
∣
ω=x

[
1

(ω + x)2
1

e2πω − 1

]

= − 1

4x3

1

e2πx − 1
− 1

4x2

2π e2πx

(e2πx − 1)2

Adding to this the residue at ω = −x, we have

F (x) =
π

2x3
ctnh(πx) +

π2

2x2
csch2(πx) .
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#20 : GRADUATE OTHER

PROBLEM: Consider a random walk of N steps in one-dimension. Suppose
that the steps are completely uncorrelated, and that the probability distri-
bution of the displacement x of a single step is given by

ρ(x) ∝ 1

1 + |x|α , −∞ < x <∞

where α > 0 is a constant. We want to know the probability distribution
P (R;N) for the total displacement R =

∑N
n=1 xn for N ≫ 1, with xn being

the displacement of the nth step.

(a) Write down the functional form of P (R;N) expected from the Central
Limit Theorem up to a normalization constant. Express parameter(s) of P
in terms of integral(s) of ρ. (You do not need to derive the Central Limit
Theorem.) For what range of α is the result (and hence the Central Limit
Theorem) valid?

(b) Compute the distribution P (R;N) directly from ρ(x) for α = 2, and find
its explicit form including normalization constant. How far does a walker
typically go after N steps? Compare your result to that of part (a) and
comment.

SOLUTION:

(a) Central Limit Theorem states that the sum of a large number of random
variable xi is Gaussian distributed, with the variance of the distribution
being N times the variance of the distribution of x. Hence,

P (R;N) ∝ e−R2/(2Nσ)

where σ ≡
∫ ∞

−∞
dxx2ρ(x).

In this case, we have

σ ≡
∫ ∞

−∞
dx

x2

1 + |x|α .

The integral diverges for α ≤ 3; thus, the Gaussian distribution is not valid
for α ≤ 3.
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(b) Let us start from the definition,

P (R;N) ≡
∫

dx1dx2 · · · dxn δ

(

R−
N∑

n=1

xn

)
N∏

n=1

ρ(xn)

=

∫
dk

2π
eikR

[∫

dxe−ikxρ(x)

]N

.

For α = 2,
∫ ∞

−∞
dxe−ikxρ(x) ∝

∫ ∞

−∞
dx

e−ikx

1 + x2
= πe−|k|.

Hence,

P (R;N) ∝
∫ ∞

−∞

dk

2π
π eikR−N |k|

= 2 Re

[∫ ∞

0

dk

2π
π eikR−Nk

]

= Re

[
1

N − iR

]

=
N

N2 +R2
.

Normalization:
∫
dRP (R;N) = 1. Since

∫
dR N

N2+R2 = π, we have

P (R;N) =
1

π

N

N2 +R2
.

Variance of this distribution is given by

∫

dRR2 1

π

N

N2 +R2
= ∞.

Hence the total displacement diverges.

Comparing to part (a), we see that for α ≤ 3, the Gaussian distribution
becomes invalid and the probability distribution function approaches new
form with broad power law tail. (This is worked out here only for α = 2
but is generally true.) The variance of the distribution diverges, reflecting
the broad tail of the distribution ρ(x). But the distribution itself is still
well-defined as it is still normalizable.


