
















































Fall 2003 Departmental Exam Solutions

N.J. Miller
Friday, August 12, 2005

Problem #1

The requirement for rolling without slipping is ωR = vx,cm. We write down
the equations of motions for xcm, ycm, and θcm and solve. This problem is
essentially the same as one done in a previous year. Applying all forces and
torques, we get for y, x, and θ motions:

−Mg + N = May = 0
−µN = Max

RµN = Iα =
2
5
MR

2
α

Solving for vx, we get

vx = v0 − µgt

Solving for ω, we get

ω =
5µg

2R
t

Setting ωR = vx at time T , we get

5µg

2
T = v0 − µgT

⇒ T =
2v0

7µg

To find the distance it rolls in this period, we must find the position of the
center of mass at this time

xcm = −1
2
µgt

2 + v0t

at time T , this is

x(T ) =
12
49

v
2
0

µg
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Problem #3

For this problem we want to find the difference in potential between the plane
and the wire. The potential for each is due to the potential of the charge on
the wire and the potential of the image wire. Using Gauss’s Law, for an infinite
cylinder with charge plastered on it, we get

Eρ1 2πρ1L = 4πλL

Therefore

�E =
2λ

ρ1
ρ̂1

Which gives ther potential as

φ = 2λ log ρ1

For the image wire, we stick charge of the opposite sign on, for

φ = −2λ log ρ2

Note that ρ1 and ρ2 refer to distance we are from the specific wire. The
potential at the plane is just 0. The two terms just cancel each other. The
potential at the surface of the real wire is

φwire = 2λ log a− 2λ log D

where since D � a we can assume the surface of the real wire is a distance
D away (approximating a line charge for that part). Therefore the difference in
potential between the plane and the wire is

∆φ =
2Q

L
log

D

a

Since Q = C∆φ, we can solve for C and we get

C =
L

2

�
log

D

a

�−1

If we instead tried to calculate the capacitance of the two wires (real and
image), we would have gotten

C =
L

4

�
log

D

a

�−1

The way we can see that the capacitance of the plane-wire system is doubled
is that it has half the total energy (upper plane and lower plane have the same
energy in wire-wire system). Since the charge on the wire is constant when
switching to the plane-wire system (and difference in potential is halved), we
see that the capacitance must be doubled.
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Problem #4

When the wire moves, there will be an EMF produced, which creates a current.
The magnetic field provides a force on the current slowing it down. The EMF
is EMF = − 1

c
dΦ
dt , where Φ = BA, where B is the magnitude of the magentic

field inside the loop and A is the area of the loop. A = K + x(t)a, whee K is
the area of the horseshoe part, x(t) is the distance from the start for the wire.
Then dΦ

dt = B
dA
dt = Bav(t). We therefore get

EMF = −Bav(t)
c

= IR

and the force on the wire is

F =
IaB

c
= −B

2
a
2

c2

v(t)
R

= Ma

We can solve this equation for x(t) as a function of time, with initial condi-
tions x(0) = 0 and v(0) = v0, giving

x(t) = − Rc
2

B2a2
v0 exp

�
−B

2
a
2

Rc2
t

�
+

Rc
2

B2a2
v0

The distance the loop travels is x(∞) = Rc2

B2a2 v0

Problem #5

Part a)

H =
p
2
x

2m
+

1
2
kx

2 +
p
2
y

2m
+

1
2
ky

2 +
p
2
z

2m
+

1
2
kz

2

The solution to this is just the product of 3 one-dimensional harmonic oscil-
lators, and the energy is the just the sum of the energies of these 3 oscillators.
We therefore get E = �ω(nx + ny + nz + 3

2 ). In order to get E = 7
2�ω, we must

have nx + ny + nz = 2. There are 6 possibilities that allow this.We therefore
have a degeneracy of 6 for this energy

Part b)

The change in potential energy is qΦ, where −�∇Φ = �E. Since �E only points in
the x̂ directions, Φ = Φ(x). The change in energy of the state is

< nxnynz|qΦ|nxnynz >=
�

d
3
�r|Ψ|2qΦ(x)

Since this integral depends only on x, the states nxnynz of 0 2 0 and 0 0 2 will
still have the same energy. Also 1 1 0 and 1 0 1 also will have the same energy.
We therefore split the single energy (6 different states) state into 4 energies with
the degeneracies as described in the previous sentence.
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Part c)

The ground state of the harmonic oscillator is N exp(−mω
2� x

2). If you don’t
remember this, you can derive it by knowing that a = 1√

2
(λx + i p

�λ ), where
λ =

�
mω
� , and a|0 >= 0. Solving for the normalization (just need to integrate

a gaussian which we can do), we get the ground state of the three-dimensional
oscillator as

�
mω

π�

�3/4
exp

�
−mω

2� (x2 + y
2 + z

2)
�

If �E = x̂E0x exp(−Ax
2), then Φ = E0

2A exp(−Ax
2), so the change in energy

to the ground state is
�

dxdydz

�
mω

π�

�3/2
exp

�
−mω

� (x2 + y
2 + z

2)
�

E0

2A
exp(−Ax

2)

The y and z integrals can be done and just get rid of their normalization
factor. We then get the change in energy as

E0

2A

�
dx

�
mω

π�

�1/2
exp

�
−

�
mω

� + A

�
x

2
�

=
E0

2A

�
mω

π�

�1/2
�

π

mω
� + A

�1/2

Problem #6

Part a)

It doesn’t matter what φa is for this part of the problem. In spherical coordi-
nates, φa measures the rotation about the z-axis (making a circle for 0 < φ < 2π

has the center of the circle as the z-axis for all φ). Therefore all we need to do is
calculate the probability of being spin up when rotating about the y-axis by an
angle θa. This requires the roation matrices. We calculate what each spin-1/2
particle rotates to and then multiple the 2 particles together. For 1-particle the
new state will be

χ
� = exp

�
i θa

Sy

�

�
χ = exp

�
i
θa

2
σy

�
χ

=
∞�

n=0

�
i

θa
2 σy

�n

n!
χ =

�
1
∞�

n=0

(−1)n �
θa
2

�2n

2n!
+ i σy

∞�

n=0

(−1)n �
θa
2

�2n+1

(2n + 1)!

�
χ

=
�
1 cos

θa

2
+ i σy sin

θa

2

�
χ

=
�

cos θa
2 sin θa

2
− sin θa

2 cos θa
2

�
χ

Therefore | ↑> goes to cos θa
2 | ↑> − sin θa

2 | ↓> and | ↓> goes to sin θa
2 | ↑>

+cos θa
2 | ↓>. Therefore our new entangled state is now
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χ
� =

1√
2
[
�

cos
θa

2
| ↑>1 − sin

θa

2
| ↓>1

� �
cos

θa

2
| ↑>2 − sin

θa

2
| ↓>2

�

+
�

sin
θa

2
| ↑>2 +cos

θa

2
| ↓>2

� �
sin

θa

2
| ↑>2 +cos

θa

2
| ↓>2

�
]

=
1√
2

(| ↑>1 | ↑>2 +| ↓>1 | ↓>1)

If we find the amplitude the first particle is spin up we get

1√
2

| ↑>

Therefore the probability of spin up for the first particle is 1
2

Part b)

As with the last case, it might be easier to create a similar problem with the
same answer. In this case θ

�
a = θa, φ

�
a = 0, θ

�
b = θb, and φ

�
b = φb − φa. The new

primed rotations have the same orientation with each other as with the original
problem. The reason we are doing this is because we have already found the
exact state the second particle is in after the measurement of spin up. The state
is | ↑>1 | ↑>2. In general if we make θ and φ, then Su along that axis is

�
2

�
cos θ sin θ exp (−i φ)

sin θ exp (i φ) − cos θ

�

with

| ↑>z= cos
θ

2
exp

�
i
φ

2

�
| ↑>u − sin

θ

2
exp

�
i
φ

2

�
| ↓>u

| ↓>z= sin
θ

2
exp

�
−i

φ

2

�
| ↑>u +cos

θ

2
exp

�
−i

φ

2

�
| ↓>u

Therefore

|↑�ua
= cos

θa

2
|↑�z + sin

θa

2
|↓�z

= cos
θa

2

�
cos

θb

2
exp

�
i
φb − φa

2

�
| ↑>ub − sin

θb

2
exp

�
i
φb − φa

2

�
| ↓>ub

�

+ sin
θa

2

�
sin

θb

2
exp

�
−i

φb − φa

2

�
| ↑>ub +cos

θb

2
exp

�
−i

φb − φa

2

�
| ↓>ub

�

=
�

cos
θa

2
cos

θb

2
exp

�
i
φb − φa

2

�
+ sin

θa

2
sin

θb

2
exp

�
−i

φb − φa

2

��
| ↑>ub

+
�

sin
θa

2
cos

θb

2
exp

�
−i

φb − φa

2

�
− cos

θa

2
sin

θb

2
exp

�
i
φb − φa

2

��
| ↓>ub
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Plugging in, multipying the states of the two particles, simplifying, taking
the amplitude of spin up for particle 2, and finding the probability it is in this
state requires HUGE amounts of algebra (which makes it seem as if there is an
easier way with less simplifcation or I am not seeing simple simplifications)

P =
1
4

(2 + cos (θa − θb) + cos (θa + θb) + 2 cos (φb − φa) sin θa sin θb)

When θa = θb and φa = φb we get 1 which is what we expect and if θa =
θb = π

2 and φb − φa = π we get 0 which is what we expect (assuming what I
expect is correct)

Problem #7

The heat capacity of water is defined as C = T
�

∂S
∂T

�
. We can solve for ∆S and

get ∆S = C ln
�

Tf

Ti

�
, where T is in kelvin. The density of water (at 20 ◦C) is

1 g cm−3, so the mass of the water is 250 g = 0.25 kg. We therefore get the heat
capacity as (they give specific heat capacity) 1047.5 J

K . The change in entropy
is therefore

∆S = C ln
�

Tf

Ti

�
= 1047.5

J
K

ln
�

323
293

�
= 102.11

J
K

Problem #8

Part a)

There are N +1 possible states. There are where 0, . . . , N links are open. There
is only one possibility for each number of open links, since every link to the left
of a link must be open for it to be open. We therefore have the states specified
as where the k left links are open. 0 < k < N . The energy for each state is k�.
Therefore the partition function is

Z =
N�

n=0

exp(−βn�) =
N�

n=0

exp(−β�)n

A simple thing to know is that

N�

n=0

x
n =

1− x
N+1

1− x

Therefore the partition function can be simplified to

Z =
1− exp (−β�(N + 1))

1− exp(−βε)
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Part b)

The average number of open links is

1
Z

N�

n=0

n exp(−βn�) = − ∂

∂(β�)
lnZ

= − ∂

∂(β�)
ln

�
1− exp (−β�(N + 1))

1− exp(−βε)

�

= − ∂

∂(β�)
[ln (1− exp (−β�(N + 1)))− ln (1− exp(−βε))]

=
exp(−β�)

1− exp(−β�)
− (N + 1) exp(−β�(N + 1))

1− exp(−β�(N + 1))

=
1

exp(β�)− 1
+

N + 1
1− exp(β�(N + 1))

The answer goes to 0 as �→∞ and N
2 as �→ 0 which is what we expect.

Problem #9

This problem is an exercise is error propagation. In general

δ(x + y) = δ (x− y) =
�
(δx)2 + (δy)2

�1/2

δ (xy)
xy

=
δ

�
x
y

�

x
y

=

��
δx

x

�2

+
�

δy

y

�2
�1/2

δ (xn)
xn

= n

�
δx

x

�

We can use these relations for errors to find the uncertainty in the accelera-
tion. Our calculated points and there errors are

l = 5.00± 0.05 cm
s = 100± 0.2 cm

t1 = 0.054± 0.001 s
t2 = 0.031± 0.001 s

The equation we must propagate the errors through is

a =

�
l
t2

�2
−

�
l
t1

�2

2s
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I switched the location of t2 and t1 in the equation since v
2
f = v

2
i + 2a∆x

and I want vf to be at photocell 2 with ∆x positive down the slope, leading to
a positive acceleration. Using the measured values (without errors) we get an
acceleration of

a = 87.2 cm s−2

The error in the denominator is

∆ (2s) = 0.4 cm

The first term in the numerator is (after combining two error propagations
(dividing and raising to a power))

∆

��
l

t2

�2
�

= 2
�

l

t2

�2
��

δl

l

�2

+
�

δt2

t2

�2
�1/2

= 2
�

5
0.031

�2
��

0.05
5

�2

+
�

0.001
0.031

�2
�1/2

= 1757 cm2 s−2

So we get
�

l
t2

�2
= 26014 ± 1757 cm2 s−2. Doing the same thing for the

second term in the numerator, we get
�

l
t2

�2
= 8573 ± 579 cm2 s−2. Putting

these two together we get
�

l
t2

�2
−

�
l
t2

�2
= 17441 ± 1849 cm2 s−2. Dividing

through by 2s gives

a = 87.2± 9.3 cm s−2

or a fractional uncertainty of 0.1 (assuming I still remember how to use my
super HP 49G). I don’t know what it means by pushing harder.

Problem #10

For a more complete discussion of essentially this problem go to http://en.wikipedia.org/wiki/Black-
body radiation

Part a)

We approximate the sun as a black-body. Then this is an application of the
Stefan-Boltzmann Law.

Prad = σT
4 × 4πR

2
s

The power radiated per unit area is proportional to T
4, where the propor-

tionality is σ = 5.7×10−8 W / m2 K4. If you didn’t know the Stefan-Boltzmann
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law, look at the fundamental constants that are given on the page before the
first problem. It is the only constant that relates power to temperature and
area (use dimensional analysis to get relation). Plugging in the values we get

4× 1026 W = 5.7× 10−8 W / m2 K4× (5780K)4 × 4πR
2
s

or

Rs ≈ 7.09× 108 m

which is close to the measured value of

Rs ≈ 6.96× 108 m

Part b)

We must find the fraction of total energy absorbed by the earth as a function
of time. At a distance of d, the power density is P

4πd2 . The earth effectively
covers its cross sectional area πR

2
E . Therefore the total power hitting the earth

is P
πR2

E
4πd2 . Using the Stefan-Boltzmann Law we have

P
πR

2
e

4πd2
= σT

4
E × 4πR

2
e

Plugging in numbers, we get

TE = 281 K

Near the measured value of

TE = 287 K

Problem #11

Part a)

For cylindrical coordinates, T = 1
2m(ṙ2 + r

2
φ̇

2 + ż
2). For z(r) defined as

in the problem, we get ż = α cos r
R ṙ, so T = 1

2m(ṙ2 + r
2
φ̇

2 + α2 cos2 r
R2 ṙ

2) =
1
2mṙ

2
�
1 + α2 cos2 r

R2

�
+ 1

2mr
2
φ̇

2. Since we just have a gravitational force, the
potential energy is V = mgz = mgα

R sin r. Hence the Lagrangian is

L =
1
2
mṙ

2

�
1 +

α
2 cos2 r

R2

�
+

1
2
mr

2
φ̇

2 − mgα

R
sin r

9



Part b)

The horizontal circular orbits are when ṙ = 0. First we must find the equations
of motion. For φ, we get

d

dt
(mr

2
φ̇) = 0

which is just conservation of angular momentum. For r, we get

d

dt

�
m

�
1 +

α
2

R2
cos2 r

�
ṙ

�
= mrφ̇

2 − 1
2
mṙ

2

�
2α

2

R2
cos r sin r

�
− mgα

R
cos r

Setting ṙ = 0, we get

mrφ̇
2 − mgα

R
cos r = 0

or

φ̇ =
�

gα

rR
cos r

We have horizontal circular orbits when φ̇ is real. This is when 0 < r <
π
2 .

Part c)

We originally satisfy φ̇0 =
�

gα
r0R cos r0, and give a bump transverse to motion

(i.e. essentially in r direction). We take r → r0 + δr(t), φ→ φ0(t) + δφ(t), and
look at the resulting equation of motion to first order in δr. Expanding out the
derivative in the EOM for r, we get

mr̈

�
1 +

α
2

R2
cos2 r

�
−mṙ

2

�
2α

2

R2
cos r sin r

�
= mrφ̇

2−1
2
mṙ

2

�
2α

2

R2
cos r sin r

�
−mgα

R
cos r

The second equation says

mr
2
φ̇ = K

where K is a constant. Plugging in to the second equation, we get

m(r0 + δr)2(φ̇0 + δφ̇) ≈ mr
2
0φ̇0 + mr

2
0δφ̇ + 2mr0δr0φ̇0 = K

to first order in δr and δφ̇. Since mr
2
0φ̇0 = K by definition of K, we get

δφ̇ = −2
φ̇0

r0
δr

Expanding the EOM to r to first order, we get
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mδr̈

�
1 +

α
2

R2
cos2 r0

�
= mr0φ̇

2
0 + mδrφ̇

2
0 + 2mr0φ̇0δφ̇−

mgα

R
(cos r0 − sin r0 δr)

= m
gα

r0R
cos r0 δr − 4m

gα

r0R
cos r0 δr +

mgα

R
sin r0 δr

=
�
−3mgα

r0R
cos r0 +

mgα

R
sin r0

�
δr

The coefficient in front of δr must be negative in order to have stable oscil-
lations. This happens when

− 3
r0

cos r0 + sin r0 < 0

or

tan r0 <
3
r0

Problem #13

This is just reflection at a dielectric boundary. In the plasma, �B = c�k
ω × �E. Using

this we get for our 2 boundary conditions (E|| and H|| must be continuous across
the boundary)

E0 exp(−iωt) + RE0 exp(−iωt) = TE0 exp(−iωt)

E0 exp(−iωt)−RE0 exp(−iωt) =
ck2

ω
TE0 exp(−iωt)

These simplify to

1 + R = T

1−R = nT

where n =
�

�(ω) is the index of refraction of the plasma. We can solve this
to get

R =
1− n

1 + n

The reflection probability is |R|2. Since ω < ωp that means that � < 0 and
n is imaginary. Therefore R = 1. All of the energy is reflected at the boundary.
Since our index of refraction is imaginary, the wave in exponentially damped in
the plasma and no energy can be transmitted.
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Problem #14

Part a)

This problem requires the use of images. The superconductor resists any and
all currents, so the magnetic field inside the superconductor must be zero. Since
Bn must be continuous, it means that Bn = 0 just above the superconductor.
We therefore need to find an image below the superconductor which gives a total
magnetic field satisfying the boundary condition. We can get this by putting
a image current I in the −ŷ direction at x = 0 and z = −h. Therefore the
magnetic field in the region above the superconductor is

�B =
2I

cr1
θ̂1 +

2I

cr2
θ̂2

where r1 and r2 are the distances from the current and image current re-
spectively and θ̂1 and θ̂2 both point in the −x̂ direction when we are at z = 0
and x = 0

Part b)

The free current can be gotten from 4π
c

�Kf = n̂ × �B|z=0. Before we can solve
for the free current we must solve for �Bx (z = 0). Both the fields due to the
current and the image current point in the −x̂ direction and have the same
magnitude. Therefore Bx = − 4I

crx
cos θ, where rx =

√
x2 + h2 (the distance

from the currents) and θ = π
2 − tan−1 h

x (the angle each field makes with the x

axis), so we get

Bx|z=0 = − 4I

crx
cos

�
π

2
− tan−1 h

x

�

= −4Ih

cr2
x

The last line comes from expanding out the cosine and simplifying. We
therefore get

�Kf =
c

4π
ẑ × �Bz=0

=
c

4π
(ẑ × x̂)

�
−4Ih

cr2
x

�

= − Ih

πr2
x

ŷ

Part c)

The force per unit length on the wire is just �f = �I× �B
c , where �B is the field due

to the image current. The field due to the image current at the real current is

12



�B = − I

ch
x̂

So the force per unit length is

�f =
�I × �B

c
= − I

2

c2h
ŷ × x̂

=
I
2

c2h
ẑ

Problem #15

Part a)

Particles in electromagnetic fields are time reversal invariant. �E is invariant
under time-reversal, while both �v and �B change sign. Therefore the motion in
these fields is time-reversal invariant. Angular momentum and spin both change
sign under time reversal so spin-orbit coupling does not change sign under time-
reversal. Kinetic energy is time reversal invariant since it involves p

2, which is
invariant. Therefore all three cases are time-reversal invariant. (?)

Part b)

By definition, T̂
2 = K exp

�
− iπSy

�

�
K exp

�
− iπSy

�

�
. Applying this to a state ψ,

we get

T̂
2
ψ = K exp

�
− iπSy

�

�
K exp

�
− iπSy

�

�
ψ

= K exp
�
− iπSy

�

�
exp

�
iπS

�
y

�

�
ψ

�

= exp
�

iπS
�
y

�

�
exp

�
− iπSy

�

�
ψ

Since Sy = 1
2i (S+ − S−), where S+ and S− are the raising and lowering

operators (and are real since their normalization factors are real), we have that
S

�
y = −Sy. Therefore we get

T̂
2
ψ = exp

�
−i 2π

Sy

�

�
ψ

Hopefully this is right
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Part c)

For a spin-1/2 particle,

Sy =
�
2

�
0 −i

i 0

�

In order to calculate T̂
2, then all we need is to calculate exp

�
−i 2π

Sy

�

�
. It

is

exp
�
−i 2π

Sy

�

�
= exp

�
π

�
0 −1
1 0

��

=
∞�

n=0

π
n

n!

�
0 −1
1 0

�n

=
�

1 0
0 1

� ∞�

n=0

(−1)n
π

2n

2n!
+

�
0 −1
1 0

� ∞�

n=0

(−1)n
π

2n+1

(2n + 1)!

=
�

1 0
0 1

�
cos π +

�
0 −1
1 0

�
sinπ

= −
�

1 0
0 1

�

Therefore for a spin-1/2 particle T̂
2 = −1. Therefore, T̂ [ψn] is orthogonal

to ψn. You can prove this by knowing that

(T̂ψ, T̂φ) = (φ, ψ)

so

(T̂ψ, ψ) = (T̂ψ, T̂
2
ψ) = (T̂ψ,−ψ) = −(T̂ψ, ψ)

so the inner product is zero and hence they are orthogonal. This implies
that the energy spectrum is at least doubly degenerate.

Problem #16

The first Born Approximation says f(k�, k) ≈ − m
2π�2 Ṽ (q), where Ṽ (q) is the

Fourier transform of the potential and �q = �k
� − �k.
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Ṽ (q) =
�

d
3
�r e

−i�q·�r
V (�r) =

4π

q

∞�

0

r sin(qr)V (r)

= −4π

q

∞�

0

r sin(qr)
Q

r
e
−r/a = −4πQ

q

∞�

0

sin(qr) e
−r/a

= −4πQ

q

1
2i

∞�

0

�
e
iqr − e

−iqr
�

e
−r/a = 4πQ

1
q2 + 1

a2

Therefore

f(k�, k) ≈ −2mQ

�2

1
q2 + 1

a2

The differential cross section is

dσ

dΩ
= |f(k�, k)|2 =

4m
2
Q

2

�4

1
�
q2 + 1

a2

�2

=
4m

2
Q

2

�4

1
�
2k2(1− cos θ) + 1

a2

�2

Since q
2 = (�k� −�k)2 = k

�2 + k
2 + 2�k� ·�k = 2k2 + 2k

2 cos θ, since k
� = k. The

magnitude of the wave vectors are the same. The total cross section is:

σ =
�

dΩ
dσ

dΩ

=
8πm

2
Q

2

�4

π�

0

dθ sin θ
1

�
2k2(1− cos θ) + 1

a2

�2

If we change variables to x = cos θ we get

σ =
8πm

2
Q

2

�4

1�

0

dx
1

�
2k2(1− x) + 1

a2

�2

If we now change variables to y = 2k2(1− x), we get

σ =
8πm

2
Q

2

�4

1
2k2

2k2�

0

dy
1

�
y + 1

a2

�2

=
8πm

2
Q

2

�4

1
2k2

�
1

2k2 + 1
a2

− 1
1
a2

�
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Problem #19

This integral actually proves Euler’s Reflection Formula

Γ(z)Γ(1− z) =
π

sinπz

It comes from the fact that the integral is a representation of B(y, 1 − y),
where B(x, y) is the Beta function, which is usually calculated as

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

To actually do the integral is first substitue t = x
2. The the integral is now

I (α) =
∞�

0

t
α−1

1 + t
dt

Lets look at a different integral.
�

C

z
α−1

1− z
dz

We take the branch cut along the negative real axis direction. Using the Profes-
sor Pac-Man contour with the mouth pointing in the negative real axis direction
(because of the branch cut), moving along the outer circle in the counterclock-
wise direction and radius of circles R and �, we get

�

C

z
α−1

1− z
dz = 2πi× (1)α−1 = 2πi

Therefore, we have

2πi =
π�

−π

(R exp(iθ))α−1

1−R exp(iθ)
dθ+

��

R

(t exp(iπ))α−1

1 + t
dt+

−π�

π

(� exp(iθ))α−1

1− � exp(iθ)
dθ+

R�

�

(t exp(−iπ))α−1

1 + t
dt

The first and third integrals go to zero when we take R → ∞ and � → 0.
Simplifying the second and fourth integrals, we get

2πi = I (α) (exp (iπα)− exp (−iπα)) = I (α) 2i sinπα

Therefore

I (a) =
π

sinπα
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Problem #20

The thing to know for this problem is that if P (x) and Q (x) and polynomials
of order n and m with m ≥ n + 2 then

PV

∞�

−∞

P (x)
Q (x)

dx = 2πi

�
Res

�
P

Q
, zj

�
+ πi

�
Res

�
P

Q
, tj

�

where zj are the poles in the upper half plane and tj are the poles on the
real axis. Since our function we are integrating is of the form 1

π
u(x)
x−t , it means

that u (x) is of the form A(x)
B(x) where the two functions are polynomials and B’s

order is at least one greater than A’s order. We can rule out B of order 1 and
A of order zero, because that integral is zero and we want the poles of u(x) to
be imaginary. If they were real then for a certain t, the pole of u(x) is t and
we don’t have a simple pole, which changes the integral. We need something
that works for all t. The next to try would be B(x) = x

2 + a
2 and A(x) = 1.

Constant multipliers can be ignored (added in if needed). We use + a
2 in B

because we need imaginary poles. This integral is

PV

∞�

−∞

1
π

1
x− t

1
x2 + a2

dx =
1
π

�
πi

t2 + a2
+

2πi

(ia− t) (2ia)

�

= − t

a (t2 + a2)

We have a t in the numerator which we don’t want. The next thing to try
would be A(x) = x + b, while keeping B(x) = x

2 + a
2. This integral is

PV

∞�

−∞

1
π

1
x− t

x + b

x2 + a2
dx =

1
π

�
πi (t + b)
t2 + a2

+
2πi(ia + b)

(ia− t) (2ia)

�

=
a
2 − bt

a (t2 + a2)

We can get a solution of 1
1+t2 if b = 0 and a = 1. Therefore u(x) = x

x2+1
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