ORIGINALS

DEPARTMENT EXAM
SOLUTIONS

SPRING , 1998



ID Number: PART I Score:

Problem 1 (PART I, SECTION 1)

A pair of masses and three springs are connected as shown below:

(a) Find the eigenfrequencies w_ and w_ of the two normal modes.

(b) Initially, the smaller mass is located 2.0 cm to the right of its equilibrium position. If
the masses are released from rest, what must be the initial deviation from equilibrium of

the larger mass if the subsequent motion is purely at the faster eigenfrequency w_?
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Problem 2 (PART I, SECTION 1)

A very flexible uniform chain of length L and linear mass density o is suspended from one
end so that it hangs vertically, with the lower end just touching the surface of a scale. The
upper end is suddenly released so that the chain falls onto the scale and coils up in a small
heap, each link coming to rest the instant it strikes the scale. Calculate the force measured

by the scale as a function of the distance = that the top of the chain has fallen.

Y
o |

Chain, of total length L, has fallen a dis-
tance x. Length element dx (of mass dm) is
about to be stopped by striking the table.



Solution

The instantaneous force is the change in momentum per unit time of the falling chain plus the
weight of the fallen segment. The chain falls downward with velocity v(z) = 4/2gz. Thus, the first

contribution to the force is
dp dm dr 9

a~ Cat "Ta 7"
=2go0cz.

F1:

The second contribution is simply F5 = g o z, the weight of the fallen segment. Thus,

F=F+F,=3g0cz .

Note that at the instant before the chain comes to rest the force is Fi,.x = 3 Mg, where M = oL
is the mass of the chain. Immediately afterward, the force reverts to the weight Mg.
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Problem 3 (PART I, SECTION 2)

An infinitely long cylindrical metal rod extends in the z direction. The.outer radius of the
rod is a. The rod is partially hollow, such that a cylindrical section of radius p is bored
out of it along its entire length. The hollowed section is centered a distance d from the

center of the rod (along, say, the x axis).

Find the magnetic induction vector E(:c, Y, z) everywhere in space, including inside the rod

and inside the hollow section as well. Show that the answer is particularly simple inside

the hole.
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Problem 4 (PART I, SECTION 2)

A laboratory-based observer measures a flux,

&= / B-d§,
b)
through some surface £. In the laboratory frame, there is only a magnetic field B(7), and

no electric field: E(F’) = 0. What is the value of the flux through this surface as measured

by an observer who travels with velocity v = v X with respect to the laboratory frame?
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Problem 5 (PART I, SECTION 3)

Prove that in one dimension the spectrum of bound states solutions of .the nonrelativistic
Schrédinger equation is nondegenerate. Why is it that degeneracies can occur for contin-

uum eigenstates? (Provide a specific example.)

Hint: Assuming two bound state solutions 1, and 1, have the same energy eigenvalue E,
show that ¥, = C¢;, where C is a constant.
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Problem 6 (PART I, SECTION 3)

Read both parts (a) and (b) below. If you can solve (a) then do so. If not,
solve (b). Do only one of (a) and (b) but not both.

(a) Derive the Thomas-Reiche-Kuhn sum rule

Y (Eg— Ea) e g1* = =

<«

for the one-dimensional Hamiltonian

p2

assuming that the spectrum of H is discrete. By definition,

Top = (Blz|a)
Hla) = Eqla) .

(b) Verify the sum rule of part (a) by explicit calculation for the one-dimensional harmonic
oscillator with V(z) = %mwzzz. Hints:
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Problem 7 (PART I, SECTION 4)

A U-tube is filled with superfluid helium. At the bottom of the tube is a porous plug which
prevents any normal fluid from being exchanged between the two sides. The superfluid can
pass through the plug. Since the superfluid carries particle number the chemical potential
is the same on either side of the tube. However, the superfluid effectively carries no energy
hence the two sides of the tube can be maintained at different temperatures. A startling
result occurs: a temperature difference AT results in a change of height Ah of one side
relative to the other. This is called the Fountain Effect.

Compute Ah/AT for superfluid helium at T = 1 K. You should assume that the helium
is described by an ideal gas of phonons (sound waves) with dispersion w = ck, where
¢ = 238 m/s. The density of the helium is p = 148 kg/m3.

You may find the following integral useful:

oo

-

/duu2 In(l-e™)=—-—.
45
0



Solution

Clearly
Ah=2P
Py
so we must find p(T') for the Helium. In the grand canonical ensemble, we have

d%
p= —-Q/V = -—kBT/W ].Il(]. _ e—hck/kBT)
(ksT)* dn [ .
= - (;c)a g;g /duu2 111(1 — € )
0
_ w2 (ksT)*
"~ 90 (he)d

Thus,
Ah 27 (ksT\? ks
AT ~ 45 (?> ZE
_on? [ (1.38x 107BJ/K)(1K) \°  (1.38x 1072 J/K)
T 45 ((1.055 X 10-34 Js)(238m/s)> (148kg/m3)(9.8m/s?)
~0.32m/K ,

a very noticeable effect!
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Problem 8 (PART I, SECTION 4)

One mole of a diatomic (y = %) ideal gas is driven along a cycle depicted below. Process
AB is an isotherm at temperature T, = 500 K. Process BC is an isobar, and process CA
is an isochore. The volumes along the isotherm are V, =1.00L and V = 4.00L. The gas
constant is R = 8.31J/mol - K. Recall that 1L =10"3m3, and y =1+ %, where f is the

number of excitable molecular degrees of freedom.
(a) What is the pressure pg at B?
(b) What is the total work done per cycle?

(c) What is the entropy change S — Sg?

-
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Solution

(a) From pV = nRT and Ty = Tp we obtain

_ nRT, (1mol)(8.31J/mol- K)(500K)
Pp = v, 4% 10~3m3

=1.04 x 10 Pa .

(b) The work per cycle is the sum W = W, 5 + Wy + Wy - Clearly

VB VB
d
Wyp = /p(V) dv = nRTA/—V =nRT, In Vs
Vv v,
Vv, Vi

A

VC
Vg )

Wge = /P(V) dv = pB(VC —Vg) = nRT, (V
A

V;

>< ¥

Wea = [p(V)dV =0 (isochore)

oS ~——,

Thus,
W =W,g+ Wpe+Wey

= nRT, {ln (_&_) + KA‘ - 1}
v, Vg
= (1mol)(8.31J/mol- K)(500K) - {In4 + 1 — 1}

= 264017 .

(¢) We know T'dS = dE + pdV, and

nRT
E:%fnRTz_y_l,
so we have JE
D
dS = — + =
S T+TdV
_ nR dT RdV
T -1T MY

Therefore,




3

We need T¢/Ty. To find this, note that BC an isobar means

T T,
po =nR—C =nR=B=p,,

Ve Vs
and with V; = V,, Tz = T, we have

Ic _Va

TB VB .

Thus,

So—Sy= L nRIn( /2
7-1 Vs

—403J/K .

g (1 mol)(8.31J/mol - K) ln(%)
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Problem 9 (PART I, SECTION 5)

Estimate five (5) of the following. Show how you reach your conclusions.

(a) the temperature at which the rotational states of the molecule Hy first become excited.
(b) the mean free path of air molecules in this room.

(c) the orbital velocity of a comet 10° astronomical units from the sun.

(d) the molar heat capacity at constant volume of a rock at room temperature.

(e) the electrical resistance of a copper wire one meter long and one millimeter in radius.

2

(f) the number of atoms in 1 cm* on the surface of a solid.

(g) the number of atoms in a cubic meter of air at a pressure of 107% torr.
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Problem 10 (PART I, SECTION 5)

(a) A 16-bit digitizer (or data logger) has a full-scale input range of £10.0 V, and takes
10,000 samples per second. The input is

V(t) =2V sin(wt) .

(1) What is the signal-to-noise ratio for the digital data?
(ii)) What is the highest frequency that can be digitized?

(b) What is the gain Vj/V; of the circuit below? Assume the op-amp is ideal.

(c) What is the approximate base pressure you would expect from a vacuum system

pumped by (i) a mechanical pump, and (ii) a diffusion pump?



Problem 10 (PART I, SECTION 5) (CONTINUED)

(d) Discuss the following circuits. Determine the current flow and voltages. The multi-

(l.ll ) ("l'l.)

meter is set to measure current (I), resistance (R), or voltage (V).

{

(e) Describe the change in (i) current through the resistor, and (ii) voltage across the

capacitor when the following circuit is completed:

100 L

L)

Z/J l Facad
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Problem 11 (PART II, SECTION 1)

Two particles of masses m] and mg attract each other according to the logarithmic po-

tential U(r) = Upln(r/a).

(a) Find the radius rg of all circular orbits as a function of the relative coordinate angular
momentum £. Show graphically that the circular orbit is stable against small perturbations
(i.e. sketch the effective potential U _g(r)).

[

(b) For small deviations about a circular orbit, write 7(t) = rg +7(t). Derive the equation

of motion for the deviation 7(¢) and solve this equation assuming 7 is small.

(c) By what angle does periapsis (the distance of closest approach) of the perturbed orbit

change during one period of the radial motion?
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Problem 12 (PART II, SECTION 1)

An ellipsoidal spacecraft of uniform density p rotates about one of its body-fixed principal
axes é with period 7. Any small rotations about either of the other two axes are amplified
according to

Sw(t) x exp(t/T) .

The equation of the surface of the ellipsoid is

:c2+ 2
a2

[ ]

+

IS
nml N
f

where a < b < c. There are no external torques.
(a) Which is the axis &: X, §, or 27
(b) What is 7 in terms of a, b, ¢, and T7

Hints: Izz = %M(b2 + cz) where M is the total mass. Also recall Euler’s equation
dL o
E;+‘E X L=N(ex‘)

in the body frame.
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Problem 13 (PART II, SECTION 2)

The following design for a charged particle trap has recently been proposed. Consider a
spherical hole of radius a, cut from an infinite dielectric medium with € < 1. Show that
a charge ¢ of mass m placed near the center of the hole is confined, and that it executes

simple harmonic oscillations about the center. Find the frequency of these oscillations.

Hint: Expand the potential inside and outside the hole in multipole moments, and assume

that the amplitude of the particle’s motion is much smaller than a.



fany+ M

[-F]
mt
cf: - Z :f’fl Tj(‘”‘g)
R
Il - l :
} ma W] tudlsue  a ij
| T=a >»T1,

T=-q )
5’“7’//—7—&39)
= # +ﬂ-amé+q/(/+f‘me)— 3 % e
- e q (7= - 7 T aE”
Ca ot
9% = (E 94’ (norwwq.,g @)
J 1 JT f- a
% 2% 2o 2 2
==> &M@ "’q—‘z‘({ TM6)=~é/q7 —{{3__%

!
~ =




we mea:[ Ke w8 ens ﬂ, By
; . 9.1, ) 3,
U 2 a*
N 23{; _ 2¢£ 3
i = %3 g3
=> 3 - 2 1 f 26+4
Q
q
297 | -¢€ 2497 €& 97,
A1 a? 26+ 1 a’ 25+1
\ 291 3¢
qg 25+/
Fovee o ?/
29 1, I-¢
F = - Q.i = - ' = m
28+1
W 2 £
osc 1+2§£




ID Number: PART 11 Score:

Problem 14 (PART II, SECTION 2)

A relativistic electron slowly radiates energy as it moves in a nearly circular orbit under
the influence of a uniform magnetic field B. Find the formula for the elapsed time {(E) as

a function of the electron’s energy.

Hints: The radiated power P of a relativistic electron is given by the relativistic Larmor

formula
, 2e? dpy dp*

pP=—
3m2c3 dr dr '’

where p# = (c"lE,ﬁ) and 7 is the particle’s proper time. You should assume the radiation
is “slow” and ignore (dE/dt)? in comparison with (dE/dt).
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Problem 15 (PART II, SECTION 3)

Calculate the differential cross section for elastic scattering of fast electrons scattering from
the ground state of a hydrogen atom. Work in the Born approximation, and be sure to

include the scattering from the proton (which is conveniently placed at the origin).

Hints: The electron density in the ground state of hydrogen is
1
n(r) = —3 exp(—2r/ag) ,
Tag

where ap is the Bohr radius. The following integral may prove useful:

o0

/drr sin(gr)n(r) = Zq—(l + %‘12‘1123)_2 .
7

0
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Problem 16 (PART II, SECTION 3)

A particle of mass m freely moves on the surface of a sphere of radius R.
(a) Find the eigenstates and energy levels of the system.
(b) Derive the parity eigenvalues of the states in terms of their quantum numbers.

(c) Determine all the excited states from which the particle (assumed charged) can decay

into the ground state by the emission of a single photon in the dipole approximation.

Hints: The Laplacian in spherical coordinates is

Some spherical harmonics:

The Hamiltonian describing the interaction of radiation with matter is

=2
H=I—— = 4.5+ 0(4%

2m  mec

and the classical vector potential is given by

/I(F,t) = Ap € cos (gﬁ T = wt) ,

c
where ¢ is the polarization vector, and A is the direction of propagation. Use the dipole
transition amplitude (f|é-p|i) where |i) is the excited state and |f) is the ground

state.
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Problem 17 (PART II, SECTION 4)

Consider a generalization of the Ising model in which the spin o; on each site may take
the values —1, 0, or +1. The spins are arranged in a square lattice. The total energy of a

spin configuration {o;} is given by the classical Hamiltonian
H= —JZO’iO’j—AZU? ,
(13) ¢

where (ij) denotes a link of the lattice (i.e. a nearest neighbor bond). (This may be used
to model a gas of magnetic particles, with o; =0 for empty sites and o; = £1 for magnetic

sites. A is then the chemical potential for the magnetic particles.)

(a) Apply the mean field approximation to obtain a self-consistent equation for the average
magnetization m = (0;) (assumed independent of the site label i). It may be convenient

to define the parameters

kg T
i;—j— , = exp(—A/ksT) .

t

(b) The limit A — oo (§ — 0) corresponds to the usual (0; = %1) Ising model. In this
limit, find the critical (dimensionless) temperature tc below which spontaneous magneti-
zation occurs. Show that m « (tc — t)'B just below the transition and find the exponent f3.

Hint: you should assume |m| < 1.

(c) Show that for small § the behavior found in (b) is valid provided that i is replaced
by tc(8). Find tc(6). What happens for larger 7
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Problem 18 (PART II, SECTION 4)

Consider the dissociation of hydrogen atoms in an otherwise empty unjverse,

H=p+e.

a) Under equilibrium conditions, what is the relationship between the chemical potentials
q p
By Hps and pe?

(b) Derive an equation for the temperature T* at which half the hydrogen atoms are

dissociated. Denote the H density at this temperature by n.

Hints: Assume that each H is either dissociated or in its ground state. Remember that
both the proton and the electron have S = % You may ignore the tiny ortho-para splitting
of the H ground state and assume both bind with energy W. Your equation for T should
involve W, my, me (you may assume mp > me), n, and physical constants. Treat the

hydrogens, protons, and electrons each as nondegenerate ideal gases.

(c) Assume that the parameter
orh2n2/3

IV me
is very small (¢ < 1). Derive an asymptotic expression for the dissociation temperature.

Also find, in this limit, the fraction of H atoms in their first excited states.

(o)
il
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Problem 19 (PART II, SECTION 5)

“Hawkeye” Jones sets out to measure g, the acceleration due to gravity. The experimental

set-up consists of a pendulum made of a steel ball of radius 1.0 cm suspended by a light
(virtually massless) string of length I. Recall T = 2w/L/g for the small oscillations of a
simple pendulum.

Jones performs five measurements and gathers the following data:

String Length [ (in cm) Period of Oscillations (in seconds)

51.2 1.448
59.7 1.566
68.2 1.669
79.7 1.804
88.3 1.896

(a) For each pair of measurements, calculate an estimate for g.

(b) Calculate the mean value of g and the standard deviation og. Assuming that all
measurement errors performed by Jones are random, express the measurement value in

the form

9obs = Ymean + Agerror -
(c) Compare g , - with the precisely known value of
gp = (979.6218337 % 0.0000001 ) cm /s

at the location of the laboratory. Is the agreement statistically acceptable? Discuss in

detail.

(d) Discuss possible errors. Can you detect any systematic error in the data, or in your

value for g , 7 Correct for any errors or mistakes which you can identify.
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This is a problem for the “first d2y”. Any student who has taken a UG physics lab course
should easily solve this.

This simple problem test the student’s abnhry to calculate measurement errors and their
understand their significance. The problem is trivial if the student realizes that correct
length to use is the distance from the pivot to the center of the ball and not the length of
the string. If they use length of the string, they will get a value of g which is 16 o away
from the true value, hence inconsistent. If they realize that there is a discrepancy then
they can begin to search for the possible mistake. This gives them another chance to use
the right length and recalculate g.

The score of 20 should be rescaled to 10 if nesded.
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Problem 20 (PART II, SECTION 5)

Answer the following questions regarding optical telescopes.

(a) Sketch light rays through a simple optical refracting telescope looking at a star.
(b) Add light from a second star.

(c) Show where film would be placed to record an image.

(d) Give an approximate expression for the image scale (in radians per mm).

(e) Now imagine that there is no film, and that you look through the telescope with your

eye. Show where your eye should be located.
(f) What factors determine the best place to put your eye?

(g) An eyepiece is a lens with a short focal length which improves the telescope for use

with the eye. Show where the eyepiece lens would be placed.

(h) Explain how the eyepiece helps.

(1) Describe two aberrations (prbblems with images) and how they can be corrected.
(j) Why are anti-reflection coatings used on lenses?

(k) Explain how anti-reflection coatings work.
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