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PARTI

Please take a few minutes to read through all problems before starting the exam. The
proctor of the exam will attempt to clarify example questions if you are uncertain about them.
Please attempt seven (7) of the (10) questions. The questions are grouped in five Sections. You
must attempt at least one question from each of the five (5) Sections. E.g. Section 1: problem 1
or problem 2. Partial credit will be given for partial solutions for seven (7) questions only.
Please indicate with a “check” which of the (7) questions you wish to be graded below:

Section 1: Problem 1 Problem 2
Section 2: Problem 3 Problem 4
Section 3: Problem § Problem 6
Section 4: Problem 7 » Problem 8

Section 5: Problem 9 Problem 10




Section 1, problem 1

A mass m is attached to the end of a string and rotating in a circle on a frictionless
table, with initial kinetic energy Fp. The string passes through a hole in the center of the
table, and someone below is keeping the string taut and slowly pulling down, until the

radius is halved. How much work was done?




Section 1, problem 2

A rope of mass M and length L is suspended vertically, with its lower end touching a
scale. The rope is released and falls onto the scale. What is the reading of the scale when

a length « of the rope has fallen?
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Section 2, problem 3

The region 0 < z < L is filled with a material with a material with z dependent
conductivity, ¢ = a/x, where a is a constant. The plane z = 0 is held at zero potential
'(grounded), while the plane x = L is held at constant potential V5 > 0. Consider the
steady state situation, where all quantities are time independent. Find the current density

f, the electric field E, and the charge density p-in the entire region 0 < z < L.
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Section 2, problem 4

A fat wire, of radius a, carries a constant current I, uniformly distributed over its cross
sectional area. A narrow gap in the wire, of width w < a, forms a parallel plate capacitor.
The gap is filled with an insulating material with permittivity ¢ and permeability u. Find
the magnetic field B (7, t) in the gap, with distance r from the central axis of the wire small

compared with a, so that edge effects can be ignored.
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“Section 3, problem 5

For this problem you are to regard the 2s and 2p states of a hydrogen atom as being
exactly degén_era.te in energy, with energy AE above the ground state (1s). An unpolarized
~beam of photons, having exactly the energy AE is incident on a hydrv’ogen atom in its
ground state. Determine the relative probabilities of excitation to the 2s state and to each
of the 2p states. Be sure to specify your choice of basis for the 2p states. Assume that you

need to only consider electric dipole transitions.

Solution Assume that we need only consider electric dipole transitions. Then the 2s state is never 'excited.
If the 2p states are characterized by their component of angular momentum in the beam direction, the
m = +1 states are equally likely to be excited and the m = 0 state is never excited.



Section 3, problem 6

A two level system has as its Hamiltonian

_{ 0 g
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in some basis. At time zero, the quantity D, described by

0 0
p=(5 1)
is measuréd and found to have trhe value zero.

1.- What is the probability that a measurement of D at a later time ¢ will yield the

value one? A
2. If a measuring apparatus monitors the value of D continuously, what is the proba-

bility that its value will be one at the later time ¢?

Solution@

1. The state vector is

o= [0

ihado = igyy
ihtp = —igo + Ay

and the Schrédinger equation is

from which it follows that
| —B*1 = g%y +ihA Y,

and therefore, since 1(0) = 1 and v, (0) = 0,

1/J1(t) =A (e—iwlt _ e—iugt)
for some constant A and :

A AT g2

w1 = % + 52— -+ ;‘F

From the Schrédinger equation for ¢ we can now deduce that
Po(t) = tAg (—-l—e”"“’lt - ie"""2t>
Wi wa

and therefore
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The desired probability is
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2. Continuous measurement of D forces the system to stay in one eigenstate of D. From the initial
condition, this eigenstate is
1
NE

If you have the solution to the first part in hand, then you can consider a sequence of measurements
separated in time by ¢; we eventually take the limit ¢ — 0. For sufficiently small ¢, the probability that
the first measurement yields one is

2.2
gle
1= PR
4h
so the probability of remaining in the initial state is
2.2
g'e

Po—l—Pl—l——4h2-

All we really need is that p; o €2, which is a consequence of the Schrodinger equation; the detailed
solution is not necessary. After n measurements, the probability of still being in the initial state is at
least pg. For fixed time ¢ > 0, choose € = t/n. Then the probability of being in initial state at time ¢ is

242 n
. -gtt
Py(t)y> (1-
O()_< 4h2n2)

and, for continuous measurement,

_ g2t2
lim log Pp(t) >nlog|1— —— ] =0
e 08 o(t) 2 n g( 4h2n2>

We have lim,, - Po(t) = 1, and the system never leaves the initial state.



Section 4, problem 7

A photon of frequency wp would have energy lev. An ideal blackbody emits power

. per unit area in the frequency range between w and w + dw equal to s(w,T)dw. Find

s(wo, 600K)
s(wo, 300K)

Recall that k5(300K) =~ eV
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Section 4, problem 8

A mole of ideal diatomic gas, of molar specific heat %R, is in a piston of variable
volume V(t) = Vu(1 + accoswt). The pressure of the gas is P(t) = Py(1 — asinwt). The
frequency w is sufficiently small so that the process is always in equilibrium and reversible,
and ¢ is a small, dimensionless, quantity. _

1. Find the net work done by the gas in the time from t = 0 to t = 7 = 2m/w. The
sign should be positive if the gas does net work or negative if net work is done on the gas.

2. The gas has internal energy E(t) at time t. Find E(37) — E(0).

3. How much heat is absorbed by the gas (with appropriate sign) between tlme t= %
and t =77
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Sectlon 5, Problem 9. Know The Error of Thy Way | : Systematic error somestimes arise

when the experimenter unwittingly measures the wrong quantity. “Hawkeye” jones sets out
. to measure g, the acceleration due to gravity. The experimental setup consists of a pendulum
made of a steel ball of radius 1.0 cm suspended by a light (relatively massless) string of length
£. Jones performs five measurements and gathers the following data:

| Strmg Length ¢ (in CM) | Period of Oscillation (in Sec) |

51.2 - 1.448
59.7 | 1.566
68.2 1669
797 1804
883 T 1.896

(a) For each pair of measurements, calculate the value of g.

(b) Calculate the mean value of g and the standard deviation (04 ). Assuming that all
_ measurement errors performed by Jones are of random nature, express the measured value
in the form &obs = Smean = o

(c) Compare 8obs With the well known value of g = 979 6 £ 0. 0000001 em/s?. s the
agreement statistically acceptable ? Explain your argument clearly If you think there is a
discrepency, its time to interrogate Jones. At your:request Jones repeats his measurements
‘and manages to reproduce the table above with an accuracy of 1/1000. Perhaps the error is
systematic in nature ! Identlfy the possible error, correct: for it and recalculate gu,. Is the -
agreement any better? :



Section 5, problem 9

Experimental problem
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Section 5, problem 10

The following questions do not require any knowledge of hydrodynamics or hydrody-
namic numerical constants. They do require some sense and the back of an envelope on
which to make calculations. Dimensionless constants of order of magnitude unity can and
should be omitted.

1. Give the dispersion relation, w vs k, for water waves in deep water.

2. How deep must the water be in part 1?

3. A storm in the middle of the ocean creates waves of all wave numbers, up to some
cutoff K. A surfer in La Jolla, several thousand miles away from the storm, sees essentially
monochromatic waves. Why?

4. On consecutive days, the surfer of part 3 sees the wavelength change. Does it

increase or decrease? Explain.

11



Solution ﬂ'@

1. The only possibly relevant physical quantities are the water density p and the acceleration of gravity
g, since water is essentially incompressible and the depth cannot enter because it is “infinite”. By
dimensional analysis, omitting a possible constant factor,

w = [k,

2. The only length in the problem, other than the wavelength, is the depth of the water. So “deep” means
much deeper than the wavelength.

3. If the beach is at a distance D from the storm, which ended a time T in the past, D and T must be
related by the group velocity, D = v,T. The group velocity depends on the wave number,

_Ow _1 /g
YT T 2V Rk

80 we see waves for which

4. On consecutive days 7" increases so, according to (1), k increases and the wavelength decreases.
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PART II

Please take a few minutes to read through all problems before starting the exam. The
proctor of the exam will attempt to clarify example questions if you are uncertain about them.
Please attempt seven (7) of the (10) questions. The questions are grouped in five Sections. You
must attempt at least one question from each of the five (5) Sections. E. g. Section 1: problem 1
or problem 2. Partial credit will be given for partial solutions for seven (7) questions only.
Please indicate with a “check” which of the (7) questions you wish to be graded below:

Section 6: Problem 11 Problem 12
Section 7: Problem 13 Problem 14
Section 8: Problem 15 Problem 16
Section 9: Problem 17 Problem 18

Section 10: Problem 19 - Problem 20




Section 6, problem 11
A stick of length L and mass M (uniformly distributed) is placed with one end on a
frictionless wall and the other end on a frictionless floor. The initial angle is o. Because
of gravity, the stick slides. Write down the Lagrangian for the angle a and use it to get

the equations of motion for a(t). Write down all conserved quanitities.
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Section 6, problem 12
A system has as phase space the two dimensional surface z2 + y% + 22 = 1 (as seen
from three dimensional space in which the phase space is embedded). The coordinates z,

¥, and z are phase space functions, and they have Poisson brackets

{z,y} = 2, v, 2} =2, {z,z}=y.

1. If the Hamiltonian is z, find the orbits in phase space.

2. Find canonical coordinates p and q on at least part of the phase space, which you
may specify. Express ¢ and p in terms of z, y, and 2, or you may give the inverse of this
relationship.

3. As a surface embedded in three dimensional space, regions of phase space are
endowed with area. What, if anything, does Liouville’s theorem say about the change of

this area with time?

Solution

1. The equations of motion are
t={z,2} =~y
Y= {y, z } = I,
with general solution
z(t) = zocost — ypsint
y(t) = zosint + yo cost.
The orbits are circles on the sphere lying in planes perpendicular to the z-axis.

2. There are many possibilities. For example, one can try to find a function f(z) such that ¢ = f (2)z,
p = —f(2)y, and it turns out that f(z) = z/v/1 — 22 does the job on the domain 0 < z < 1. Another
possibility is z = /1 — ¢? cosp, y = —+/1 — ¢2 sin p, which works on the same domain. For this choice,

z=q.
3. The area measured using canonical coordinates is invariant. Use the second choice in part 2. Then
dz dy = g dqdp,

so dr dy/z is invariant. This is exactly the area element on the sphere, as inherited from three dimen-
sional space.

13



Section 7, problem 13

In a region of space there is a uniform magnetic field B= :%Bd. An uncharged copper
sphere of radius R moves with a velocity ¥ = vgg through the magnetic field. Compute the
electric field everywhere (inside and outside the sphere), as seen in the lab frame. Also,

find the surface charge density on the surface of the sphere. Take vy < c.

14



Sowution B 13

Sul w\l‘-\‘,\p L,J 0 ‘f\q _ SOLUTION

Part I

3. In aregion of space there is a uniform magnetic field B=y Bo. An uncharged copper Problem 1

sphere of radius R moves at constant velocity v=vyt through the magnetic field.
Calculate the electric field in all of space, as seen in the laboratory frame. Is it necessary

to exert a force on the sphere to maintain its motion? (Hint: Of course, vy is much
smaller than c.)
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Section 7, problem 14

Concentric circular loops of wire of radii R; and Rg, with R; < Rp, carry currents

I,(t) and I(t) given by
I (t) = vR3 cosut,

I(t) = —vR? coswt.

Suppose the frequency w is low, wRs/c < 1. Compute the total rate of radiation (in

Watts) of this system, in terms of R;, Rg, v, w and c, the velocity of light in vacuum.

Grad E&M  Concentric circular loops of wire of radii R; and Ry, with R; < Ry, carry currents I; (t) and
I>(t) given by

I (t) = vR2 coswit,

I1(t) = —vR? coswt.

Suppose the frequency w is low: wRy/c <« 1. Compute the total rate of radiation (in Watts) from this
system. Give the solution in terms of Ry, R, v, w and the velocity of light in vacuum, c.

[Remark: I made up this problem for an exam many years ago and it is probably safe to recycle it now.|

Solution Recall that, in SI units, when the current density is of the form R[J(7) exp —iwt], the vector
potential has the similar form R[A(F) exp —iwt| with '

A= 2 / &' J()ek=,

4megc?

and the radiation field is )

4dmegcr

where 7 is the Fourier transform of the current density,

A(R) = e J (k)

F®) = / B! J(F)e— R T

15
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Looking ahead, we have, in the radiation zone, 5

_ ik . =
B(m = 471_60027_7“ x J(kF)

E(F) = cB(7) x #

= é?()C2 = =
5(F) = —<-RE(7) x B*(7)
k2 Y TR I
= T r— |# x J(k7)|* 7.

Now we must compute J (E) in the limit of small k. Choose coordinates so that the current loops are in
the z-y plane, centered at the origin, and 7 = cosz + sin¢Z. We find

27
J(ki) = [ d6 (sin0 — cos0g)v [RER e kFrsintcost _ p2 RyeikRasing cosf]
0

27 —aba 3
= / df (sin 6% — cos 85)v (RZR} — RIR3) (——El—c?‘n—w) cos® @
O .

(where we kept the lowest power of k whose coefficient does not vanish)

nik3 sin® ¢

L URR (S - RY).

=9
Now assemble the pieces and integrate over solid angles to get the total radiated power:

k2 72kS sin® P
32n2g0c 64

P= / 27 sin dyp V2RIRS(RZ — R%)?
0

(using | x §J2 = 1)

_ k8
T 1024egc

= e BB - R
1120ggc ! 1

V2 R{R5(R2 — R?)? /0 sin’ 1 dyp

[The numerical factor is not guaranteed.)



Section 8, problem 15

Consider a particle of mass m moving on one dimension in a potential well V(x). The
Hamiltonian has a complete discrete spectrum, with eigenvalues E,, and wavefunctions .

Show the validity of the sum rule

2m
Z ?JXniP(En - Ez) = 17

n

where 7 labels any of the bound states and

X’ni = <¢n|§|wz>

16
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Section 8, problem 16

Calculate the energy shift in the ground state of the hydrogen atom due to the finite
extension of the proton. Treat the proton as a sphere of radius R with homogeneous charge

distribution. Hint: use first order perturbation theory.

17
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Section 9, problem 17
A particle of mass m, called A, undergoes the reaction
A+ Ao A

where the bound state A; has mass 2m and binding energy W (i.e. the energy of a
stationary A, composite is —W < 0). The system is at equilibrium at temperature T, in
the thermodynamic limit, with N total particles A in volume V', and n = N/V finite. The
N total particles are distributed as N7 unbound As and N2 composites. The particles are all
nonrelativistic and you can ignore any internal rotational or vibrational degrees of freedom
in Ay. Each A is indistinguishable from the others, and each A, is indistinguishable from
the others.

Find the partition function of the system and the free energy per particle. Use this

to find = N; /N, the fraction of the particles which are unpaired.

18



SOLUTION:

We have N1 +2N; = N = nV, and N} = zN. Therefore Ny = %(1 —z)N. We now write down

the partition function
zh Z
TN N

where Z; = (V/A3)™M where A = (2wh2 /kaT)l/ 2 is the thermal wavelength. For the composites,

we clearly have
v\
Z2 — (23/2 eW/kBT Xg) .

Note that the thermal wavelength of the composites is 23/2 times smaller than that of the monomers

zZ

due to the mass difference (2m versus m). The free energy per particle is then f=-N"1kTInZ:

f __1 1z, (==Y 1 3y _li1—g (2 w
o s1+z)+zlnz+ 3 In 3 +5(1+z) In(nA%) — 3(1 - z) 21n2+kBT .

We now minimize with respect to z, setting 8f/0z = 0, which yields

2lnz -In(1 —z) + gln2+ K-+ln(n,\3) =0,
ksT

the solution of which is
2

14 [1+8v2n)® exp(W/kaT)) /2

x

Interpretation: At low values of the density n we have z = 1 and none of the monomers bind,
despite the fact that W > 0. The reason is that entropy favors them to remain unbound. For fixed

n, we correctly obtain (T — 0) = 0.



Section 9, problem 18

A gas of classical identical particles is interacting with some two body potential U (|]).
Write a formal expression for the grand partition function Z, as a function of the temper-
ature T' and volume V' and potential U(r). Determine the pressure p(z,T) and density

n(z,T), both to second order in the fugacity z = e#/*T.

19



UCSD P<YSICS REE 234 0173 nG 0800 2:25PY;Jeilzx s507;Page S/
2
Solution
To second order in the censity, <ne kzs
prhelT=n=EBanu® =+ ,

\'s’h‘.‘.l'c B}

By= -} [ [entinenT - 1]

: : i
Jnterlude - This resuit 15 easily derived by taking the logarithm of the grzad partition function,
— 1
== Z _..'.e-'\».'-ref Zx(T,V)
N :
N=0
=14 VWA= 122VAzS /d’re'g{'}/k"f $.

/ g - .
where Ap = o/ 2w 72 [mksT is the thermal wavelength, which appears upen performing the momen-
turn integrals, viz.
~3
j --———)J exp({-p?/2mkaT) = Ar
Reczlling that InZ = Q/ET = -7V / kT 2nd carrying out the Tayler series expansion to secend

crder in the fugacity, cne immediately cltains the expausicn for piz, T}

sk T = 2332 - 32 A7t /cﬁr flr) =

where f(r) = e-UlrYEsT _ 1 is the Mayer function. Next, one invekes n = ~V-HEQ Qudry =

8(pjksT)/81n 2 to obtain a secies expansion for n(z, T):
n=:37 + 227" /a“’r,‘(r)+ :
Finally, one inverts n(z,T) to find :(=,T) and substitutes into the pressure equation, yielding
p kT =0+ Bonl+...,

with 2, = =& [d¥ 7(r).

(a) The Mayer function fur our prebiem is

$tr) = [(f;)"""'"r - 1] o).

“Chis is continuons and strictly nonpesitive for r € (0, o). Integrating, we find

lo

Bi(T) =}~ g ienT

+0

\¥



Section 10, problem 19

Energy in a star is produced my nuclear reactions. The number of collisions with

center of momentum kinetic energy in the interval from E to E + dF is
Ne B/*TEGE

per unit time, with N a constant. The probability that a collision with CM energy F will

result in a nuclear reaction is
Me=o/VE,

where M and a are constants. Find an approrimate expression for the total number of

nuclear reactions, per unit time, assuming that

kT 1/3
(?) <K 1.
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Section 10, problem 20

Evaluate

400  ax ' ' :
€
I = ' .
(a) /_ FrI (0<a<y)
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Section 10, problem 20

Evaluate

I(a) = /_:o e 1°(Y (0<a<).
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