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PHYSICS DEPARTMENTAL EXAMINATION

SPECIAL INSTRUCTIONS

Please take a few minutes to read through all problems before starting to work. The proctor of the
exam will attempt to clarify exam questions if you are uncertain about them. It is important to
make an effort on every problem even if you do not know how to solve it completely. Partial
credit will be given for partial solutions.

Problem 1.

In a region of space there is a uniform magnetic field B = §B,. An uncharged copper sphere of
radius R moves at constant velocity v = Vo through the magnetic field. Calculate the electric field

in all of space, as seen in the laboratory frame. Is it necessary to exert a force on the sphere to
maintain its motion? (Hint: Of course, v is much smaller than ¢ .)
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Part I
In a region of space there is a uniform magnetic field B=y B,. An uncharged copper Problem 1
sphere of radius R moves at constant velocity v=vy# through the magnetic field.
Calculate the electric field in all of space, as seen in the laboratory frame. Is it necessary
to exert a force on the sphere to maintain its motion? (Hint: Of course, Vg is much
smaller than c¢.)
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Problem_2,

A radio pulsar emits a broad spectrum of radiation in the form of pulses of a few msec duration.
Because of the dispersion of the interstellar plasma the frequency of the signal received at the earth
drifts during the pulses. Assuming that the index of refraction of the plasma is given by

n=,/1-w,,2/a)2:

2)  Find an expression for the frequency drift 42 during a pulse in terms of distance from the
pulsar, x frequency of the pulsar, @, and the plasma frequency, w,.
(Assume @_ << @)

b)  The observed frequency shift in a pulse of duration 10 msec was 50 Khz and the mean
frequency was 80 Mhz. w,= 10* sec™. Find the distance to the pulsar.
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Problem 3.

The captain of a small boat becalmed in the equatorial doldrums decides to resort to the expedience

of raising the anchor (m = 200kg) to the top of the mast (s =20 m). The rest of the boat has a
mass of M = 1000 kg.

a) Why will the boat begin to move?

b) In which direction will it move?

c) How fast will it move?
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(c) How fast will it move?

( Chicago)

Solution:

(a) The vertical motion of the anchor causes a Coriolis force —2muw x v,

where v is the velocity of the anchor and w the angular velocity of the
earth, and so the boat moves.

(b) As w points to the north and v is vertically upward, the Coriolis
force points toward the west. Hence the boat will move westward.

(c) As the total angular momentum of the boat and anchor with respect
to the center of mass of the earth in an inertial frame is conserved, we have

(M +m)riuwg = [Mr? + m(r + 5)|w

where wy and w are the angular velocities of the earth and the boat
respectively, r is the radius of the earth, giving
w (M +m)r?

wo (M +m)r2 4+ 2mrs °

or
w —wy —2ms —2ms

wo ~ (M +m)r+2ms ~ (M +m)r’
Hence the relative velocity of the boat with respéct to the earth is

u=r(w-uw)= —;L_::: =-49x10"* m/s .

The negative sign indicates that the boat moves westward.

1121

A simple classical model of the CO, molecule would be a linear structure
of three masses with the electrical forces between the jons represented by
two identical springs of equilibrium length ! and force constant k, as shown
in Fig. 1.90. Assume that only motion along the original equilibrium line

is possible, i.e. ignore rotations. Let m be the mass of O- and M be the
mass of Ct+,

(a) How many vibrational degrees of freedom does this system have?
(b) Define suitable coordinates and determine the equation of motion
of the masses.
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Fig. 1.90.

Solution:
(a) The system has two vibration:fl
(b) Let z;,z2 and z3 be the dis
from their equilibrium positions respe _ -
equations of motion are

m:'i:l = k(Iz - .’tl) N
Mz, = k(.’rg - Ig) - k(:tg -
miy = —k(za — z2) - ’

(c) Let z; = Ajcoswt, T2 = A
equations above. We have

(k—mu
—kA; + (2k - M
—kA; + (.
For A,, Az, A3 not to be identically z -
k — mw? -k
-k 2k - M
0 -k
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Problem 4.

An ideal gas consisting of particles of mass, m, is located in the spherically symmetric gravitational
field of a massive star (mass M, radius r,). The thermal conductivity coefficient of the gas is

proportional to T%. At the center of the star there is a heat source which maintains a constant
temperature at the surface of the star so that T(r,) = T,. The density of the gas at the surface of the
star is n,. Assuming there are no heat sources in the gas, that T goes to zero at r = oo, and that the
gas is in hydrostatic equilibrium:

a)  Construct a stationary solution for the density, n(r), and temperature, T(r) of the gas.

b)  Consider this solution as a model for the solar corona and calculate the pressure of the corona

at infinity. Compare this pressure to the cosmic ray pressure 1072 dyne/cm®. On the basis of this
comparison is this a reasonable model for the solar corona? Use the following numbers:

n=736x10"cm, T,=10°K
n,=10°cm™, M=2x10"g¢

m=10" g G=6.67x10" cm*/g—sec?
(gravitational constant)
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Problem 5.

The lowest (non-zero) rotational energy level of a H, molecule has energy
€,/ k=350K
(k =Boltzmann constant)

(a) Estimate the average rotational energy of Hy molecules at temperature T=50K.

(b) Same as (a) for Dy molecules, assuming the interatomic distance is the same as for H>
molecules.

(c) Same as (a) for temperature T=3500K.
(d) Estimate the error of your result in (a).

Express all your answers in °K x k.
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Problem_6.
A thermally insulated cylinder contains in 1/2 of its volume one mole of water vapor, one mole of
liquid water and one mole of ice in equilibrium. The other 1/2 of the volume is empty. The partition
separating the two halves is removed, and the system reaches a new equilibrium state.
(a) How much (in moles) of each phase is there in the final state?
(b) What is the pressure (in mm Hg) in the final state?
(c) What is the temperature (in °C) in the final state?

Your answers don't need to be accurate to more than 1%. Assume water vapor is an ideal gas. If
you make any approximation, justify it.

Hint: Assume that the change in temperature is small for parts (a) and (b).
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Some of the following information should be useful:

¢ Temperature and pressure of water at triple point: Ty =0.01 °C =273.16 °K
Py =4.58 mm Hg

* Latent heat of fusion of ice: 80 cal/mole

* Latent heat of vaporization of water: 540 cal/mole

*  Specific heat of water: 18 cal / °C mole

* Phase-equilibrium lines for water near the triple point:

27mmHg/°C liquid-vapor
Z_}Ti = 101,840 mm Hg/°C  solid-liquid
32mmHg/°C solid-vapor
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Problem 7.

Let [m > be an eigenstate of angular momentum such that

L |tm) = him|em)
with
Llem) = h2¢(£ + 1)em)
and

P=L’+L7+L}?

.a) Find L,|¢m) where L, =L + iL,

b)  Find (&m|Lem)

Justify all steps.
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Problem 8.

A particle moves in a one-dimensional potential defined by

ex? forx>0
V(x)={—
) {+oo forx<0

Withc>0
Find the energy eigenvalues.
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PHYSICS DEPARTMENTAL EXAMINATION
SPECIAL INSTRUCTIONS

Please take a few minutes to read through all problems before starting to work. The proctor of the
exam will attempt to clarify exam questions if you are uncertain about them. It is important to
make an effort on every problem even if you do not know how to solve it completely. Partial
credit will be given for partial solutions.

Problem 9.

A long cylindrical copper rod is of radius R. For time, r < 0, the rod is immersed in a uniform
external magnetic field B = 2B, where (z,,6) is a cylindrical coordinate system with the z-
axis coincident with the axis of the rod. At =0, the external field is switched off (or the rod is

suddenly jerked out of the field). You may assume that & R*/c? is large compared to the
time for the external field to be switched off, where & is the conductivity of the copper rod.

a.  Obtain an equation that governs the evolution of B.(r,0,1) in a cross section of the rod
that is far from either end. What boundary condition does B.(r,6,t) satisfy atr=R ?

b. Find B,(r,6,t) fort>0andr<R.
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Problem 9

A long cylindrical copper rod is of radius R. For £ <0, the rod is immersed in a uniform
external magnetic field B=2B, where (z,r,6) is a cylindrical coordinate system with the
z-axis coincident with the axis of the rod. At ¢ =0, the external field is switched off (or
the rod is suddenly jerked out of the field). You may assume that T =0R%c? is large
compared to the time for the external field to be switched off, where & is the conductivity
of the copper rod.

a.  Obtain an equation that governs the evolution of B, (r,8,t) in a cross section of the
rod that is far from either end. What boundary condition does B, (r,8,t) satisfy at

r=R?
/ —
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b.  Find B,(r,84) forr >0 and r <R.
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Problem 10.

A plane electromagnetic wave in vacuum with

E(r.t)=Re Eei(kz - ax)

is incident on and scatters off of a free electron. The electron motion is non-relativistic. Does the
electron experience a time averaged acceleration in the z direction? If so, what is the magnitude of
the acceleration?

Hint: Consider conservation of momentum.

2
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Problem 11.

Evaluate the sum

= 1
) .
n:——oon4+a4

The solution should contain neither integrals nor infinite series and should be manifestly real
when a is real.
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Problem 11

Mathematical Physics Compute the sum

Z ”l+al

The solution should contain neither integrals nor infinite series and should be manifestly real when a is real.
Solution Use the residue theorem to write
=

S“i 1 _ dz mcotmz
- nt+at Jo 2mi 2t 4 at’

n=00

where the path C encloses the real axis in the counterclockwise sense. In addition to the real poles from the

cot, there are four poles
i(2n+1)1r/4, n=0...3

T, = ae
=Tro, iro: —To, “iT'O
and ro = ae*™/4. Close C “the other way” to obtain

3 1

S E mcot ry, T cot ry,
== 3 "_"E: 3
4ry 2= 1

n=0

T . .
= —ﬁ[cot mro + i cot imrg).
0

Straightforward algebra leads to

g = 7w sinhv2ra + sinv2ra
" V243 cosh v27a — cos Vora’
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Problem 12.
You know that at most one fermion may occupy any given single particle state. A parafermion is a
particle for which the maximum occupancy of any given single-particle state is k, where k is an
integer greater than zero. (For k = 1, parafermions are regular everyday fermions; for k = e
parafermions are regular everyday bosons.) Consider a system with one single-particle level
whose energy is €, i.e. the Hamiltonian is simply H = en, where n is the particle number.
a) Compute the partition function Z(u,T) in the grand canonical ensemble for parafermions.

b) Compute the occupation function n( 11, T). What is n when H=-? When t=e? When
M =+0? Show that n(u,T) reduces to the Fermi and Bose distributions in the appropriate limits.

¢) Sketch n(u,T) as a function of U forbothT=0and T>0.

d) Can a gas of ideal parafermions condense in the sense of Bose condensation?



SOLUTION
Part I1
2 . Problem 12
Solution

We have that N = n (since there is only one level, there is no state index associated with n), hence

- H - uN
“‘T‘""“’( kT )

1 — yk+1
:1+y+y2+...+yk=ﬁ

where y = e(#=¢)/kT_ Note that there is no singularity as a function of y (even at y = 1).
The occupation n(u,T) is given by
_ kT 0= 0ln= 1 (k+1)

n=

Eop Yoy yi-1 ygD_71°

Note that for £k = 1 we have

L1 2 1
k=17 y-1o1 y2o1 Tyl

while for k¥ = oo, where u must be less than ¢ in order for the partition sum to converge, we have

y < 1 and y~*+1) — oo (much faster than k — co) and hence

1

nk:oo = y-1 -1 .

Thus, the Fermi and Bose functions are recovered.

Checking some values of 4z, when p = —co we have y = 0 and the formula gives n = 0. This makes
sense because the chemical potential is so negative that there are no particles in the system. When
p=+o00,wehavey =0 and n =k, whjchr:says that we are at maximum occupancy, and this also
makes sense. When p = ¢ (y = 1), the chemical potential is set exactly to the energy of the single
particle level, which means the probability of occupancy is 50%, and we find n = -;-k. This can be
extracted from the general formula by setting y = 1 + ¢ with € — 0, or by noting that

Lo 001y 2P kgt 0414244k R(E+1)
B YHy+y24. +yk T141414...4+41 k41

=1k.

Since the maximum occupancy is k, there is no phase transition in the sense of Bose condensation.

AN
k -+ T=°
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l
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Problem 13.
Consider a system of 2 atoms of mass m in a one-dimensional box of length L. The interaction
energy between the 2 atoms is
-ug for Irj-nl<a
u(r-nh=

0 for Irj-ml>a

Assume a<<L, and ug>0. The system is in a heat reservoir at temperature T. Treat the system
classically.

u(r)

(a) Find an expression for the "pressure” of this system

dlnZ
P=kT
oL

at temperature T (Z is the partition function). Your answer should reduce to the ideal gas answer
P=NKT/L fora — 0.

(b) Give limiting values of the result in (a) for (1) T<<ug and (ii) T>>ug. If any of these reduces to
the ideal gas answer give the next order correction. Explain the physical meaning of the results.
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Problem 14.

A particle of mass m moves under gravity on a smooth surface, the equation of which
isz=x"+y* - xy, the z-axis being vertical, pointing upwards.

a) Find the equations of motion of the particle.

b) Find the frequencies of the normal-modes for small oscillations about the position
of stable equilibrium.

c) If the particle is displaced from equilibrium slightly and then released, what must be
the ratio of the x and y displacements to guarantee that only the higher frequency
normal-mode is excited?



& Solutions on Mechanics

) aK
V== 2 _ 22
2M§ 2e§'
'Qé)_aL__o
o) o
» aK
,+T€—0.

frequency of small oscillations about the

) = aK

TV Me?
2 Me
— =2my/ — .
w " oK

, then aK is positive and the above results

e then

1%
3?) <0
o

1 at equilibrium is a maximum and the
no oscillation occurs. This can also be
1, which would give an imaginary w.

2066

i under gravity on a smooth surface the
} — zy, the z-axis being vertical, pointing

sion of the particle.
-normal-modes for small oscillations about
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(c) If the particle is displaced from equilibrium slightly and then re-
leased, what must be the ratio of the z and y displacements to guarantee

that only the higher frequency normal-mode is excited?

xﬁ3(> — (Wisconsin)
Soluti nC C)“'\‘*”’\“( Coo s -
olution: .
2, % —
(a) As f T ' » =cCch
. x =rcos SR
z=z°+y* —zy, — o~ soO0y ZERE
S = 923 4+ 20 — By — 20 = B2 (2 — =) . ; 2
£=228+2yy -2y -2y =32z - y) +y(2y - z) oy ey
The Lagrangian is z = Z > -z

- — —(6353-3-
L=T-V

1
= gmlt® +9° + 2222 ~ ¥)? + 572y — 2)* + 289(2z - y)(2y — =)]
—-mg(z? +y® —zy) .

Lagrange’s equations

give
d, . . .
&+ 22z = 9)? + (2 ~ y)(2y - 2)]
=2i%(2¢ — y) — 9?2y — «) + 2i9(2y — 7) — 2Y(2z — y) — 29z + gy ,
2 li+ 32y - 2)? + #(20 - )(2y - 2)
= 29%(2y — z) — £%(2z — y) + 2¢9(2z — y) — £Y(2y — z) — 29y + g .

(b) As

g—: =mg(2z - y), % =mg(2y —z),

equilibrium occurs at the origin (0,0). For small oscillations about the
origin, z,y, £,y are small quantities and the equations of motion reduce to

. 2 ‘ot o
z+2gx—gy=0, il g Xoec *23X08'L
P 5 i+29y—9z=0. —qy,€ ‘=0
2 ot 2
"8 2sy, (25—« xp =34, =0

"")"' ec«-t":a
Zo fw\X‘jo-jx,,_:a

os et o
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Considering a solution of the type

e

wt twt N

T = zp€* Y = yoe

we find the secular equation

29-w?® -9

—g  2g—u2|=@-w)Bg-wl)=0.

Its position roots
w1 = /4, w2 = /39

are the angular frequencies of the normal-modes of the system. Note that
as w), wp are real the equilibrium is stable.

(c) As j_C o - V3
Yo _ 29 —uw?
o g ' -
EiNaL
for the higher frequency mode to be excited we require ¥ ”3- = —1. Hence the

initial displacements of x and y must be equal in magmtude and opposite
in sign. Note that under this condition the lower frequency mode, which
requires yo/zo =1, is not excited.

e

7
2067 / R
A rigid structure consists of three massless rods joined at a pouit
attached to two point masses (each of ‘mass m) as shown in Fig. 2.69,
with AB = BC = L, BD = l, the angle ABD = DBC = 6. The rigid
system is supported at the point D,and rocks back and forth v}nth a small
amplitude of oscxllatlon What is/the oscillation frequency? What is the
limit on [ for stable oscillations?
/ (CUSPEA)

Solution:

The structure oscillates in/ a vertical plane. Take/t as the zy-plane as
shown in Fig{ 2.70 with the origin at the point of support D and the y-axis
. /
vertically ypwards. We hav, /

AD=CD=b=+/L?>+12-2Licosh ,

5"“’3

~N

Analytical Mechanic

_.<23——w> z O

- CJ +“f3‘*’ "O

Fig. 2.69.
(33 ,wx(ﬂ’ )

Fig. 2.7

and the angles between AD and CD -
respectively, where a = 0 + 9, ¥ being

The masses mi, M2 have coordinat
(~bsin(a + ¢), ~beos(a + @)

and velocities
(~bp cos(a + ), bpsin(a + )

respectively. Thus the Lagrangian is
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Problem 15.

Use the variational method to calculate the total binding energy of the two electrons in a helium atom in
its ground state. Use the standard hydrogenic wave functions with Z* < Z (due to screening) as a

. . 1. . .
parameter for trial wave functions. You may use the expected value of — in a hydrogenic state with

1

1
r h—n

r
\PIOOlPlOO> = % .

\Pw()) = %’ and <lP100\Pnoo

nuclear charge of Ze, <‘I’100
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Problem_16.

A beam of particles of mass in is incident on two identical scattering centers separated by a
distance, d, and aligned at angle 6, (6, < 7/2) with respect to the direction of the incident beam

(2). as shown in the picture

The incident particles are described by wave packets of mean momentumk = k7. Assume
kd<< 1. The scattering centers are described by &-function potentials:

V(r) = V.8(7) for a center at the origin.

a) Find the differential scattering cross section in the Born approximation.

b) For which direction(s) is the differential scattering cross section maximal for scattering in the
plane defined by the scattering centers?

¢) Give a general condition on the angles 0 and ¢ in spherical coordinates for which maximal
scattering occurs (use the axis convention shown in the figure). What is the range of values of 6
and ¢ for which maximal scattering occurs?
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