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[1] A massless spring of zero unstretched length and spring constant k connects particles
with masses m) and my. The whole system rests on a frictionless table. The masses are

free to move in z and y on the table.

(a) Write the Lagrangian for the system choosing a set of coordinates which are optimized

to have the most cyclic coordinates.

(b) What are the generalized momenta associated with the cyclic coordinates?
(c) Write the Hamiltonian for the system using the same coordinates.

(d) Determine Hamilton’s equations of motion.

(e) Reduce the problem to a single differential equation in one variable plus conserved

momenta.



PROBLEMY8)} (15 points)

A massless spring of unstretched length b and spring constant k connects particles

with masses m; and m,. The whole system rests on a frictionless table. The masses are

free to move in z and y on this table.
a) Write the Lagrangian for the system in any set of coordinates. How many coordinates

are needed to describe the system.
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b) Now write the Lagrangian for the system choosing a set of generalized coordinates
which are optimized to have the most cyclic coordinates. (A coordinate ¢ is cyclic if
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¢) What are the generalized momenta associated with the cyclic coordinates?
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d) Write the Hamiltonian for the system using your optimized coordinates.
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e) Determine Hamilton’s equations of motion.
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[2] An interstellar mission is sent from earth to a solar system which is at a distance of
20 light years from the earth. The spaceship is rapidly accelerated to a velocity (relative
to the earth) of 0.99¢ toward its objective. Upon reaching the distant solar system, the
crew takes some pictures as the ship is rapidly accelerated to 0.99¢ heading back toward

the earth. The pictures are immediately transmitted by radio to those waiting on earth.
(a) How long does the round trip take according to people waiting on earth?
(b) How long does the round trip take for people on the spaceship? ~

(c) After how many years since takeoff do the people on earth see the first pictures from

the distant solar system?

(d) In those pictures, they see the wonders of the distant solar system as well as the clocks

on the spaceship. What time do those clocks read (in years)?
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[3] The center of a conducting sphere of radius R resides on a plane that is the interface
between two large dielectric slabs (see figure). The upper slab is characterized by dielectric
constant €} and the lower by dielectric constant €2, and both slabs are very thick compared
to R. Given that the total charge on the sphere is Q. determine the electric field in the

vicinity of the sphere.



2
PROBLEM # (10 points)

A spaceship is sent from earth to another solar system which is at a distance of 20
light years from the earth. The spaceship is rapidly accelerated to a velocity (relative to
the earth) of 0.99¢ toward its objective. Upon reaching the distant solar system, the crew
takes some pictures as the ship is rapidly accelerated to 0.99c heading back toward the
earth. The pictures are immediatly transmitted by radio to those waiting on earth.

i ?\a) How long does the round trip take according to people waiting on earth?
| % O
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/. 1 b) How long does the round trip take for people on the spaceship?
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on the the spaceship. What time do those clocks read (in years)? Show that this is
consistent with the Doppler shifted clock frequency.

@ d) In those pictures, they see the wonders of the distant solar system as well as the clocks
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[4] A thin conducting sheet of thickness ¢t and conductivity ¢ moves with a constant speed
v between the poles of a magnet. The magnet makes a uniform field B perpendicular to
the sheet over a circular area of radius R. Calculate the electric field, the current density
7, and hence the drag force on the sheet. This is the basis of the eddy current damping

used in many applications such as chemical beam balances.

Note: Let the velocity be in the y direction and the magnetic field B be in the z direction.
The problem is two dimensional, best solved in cylindrical coordinates. Ignore the field

made by currents in the conducting sheet.
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5] Five Easy Pieces. Each answer must be supported by reasoning.
y g

Possibly useful information:

¢ 1 Rydberg = '—7%;%4 = 13.6 eV
h'.’

me?

~0.5%

e Bohr radius: ag =
e Nucleon mass my ~ 2000m,

a) A proton and an electron form a bound pair with a mean distance of about 0.5 A.
p P

Estimate the order of magnitude of their interaction energy in electron volts.

(b) A deuteron has a radius of about 1 Fermi (= 107! m). Estimate the order of

magnitude of the strong interaction energy of the nucleons in electron volts.

(c) An clectron is trapped by an electric field on a helium surface. By means of the
uncertainty principle or otherwise, deduce the electric field dependence of the electron

ground state energy.

(d) Determine the degeneracy of the first excited state of a simple harmonic oscillator of

frequency w in three dimensions.

(e) Let T be the operator representing a rotation of 120° about the axis joining two
possible positions of the nitrogen atom in NH3. Clearly 73 = 1. Find the eigenvalues of

the operator T.
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[6] Consider a system of two non-identical particles, 1 and 2, which have the same mass

p. The potential energy of the system is given by

Py

\/7"‘12+rg — 27 -T9

(GRE

+B(rP+ri4+27 7)) AB>0.

Find the ground state energy of this quantum mechanical system.
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[7] Gas molecules of mass m' effuse from a hole

of area 4 in a cubic box of volume V" at tempera-

\%
ture T. They bounce elastically off of a target of _{'a vacuum
cross sectional area 4’, as shown. The density of n, A A

molecules in the box is held constant at ng, and a

vacuum is maintained in the surrounding area.

(a) Calculate the work required to bring the target from infinity to a™distance L from the

target, assuming that A'/L? « 1.

(b) Now suppose that the initial density of molecules in the box is ng at time ¢t = 0, but
that the molecules are not replaced as they leave the box. Outline the argument leading
to an approximate expression for the flux of molecules leaving the box in terms of the
density, n(t), of molecules in the box at time t. You may express your answer in terms of
the mean speed. 7, of a molecule. Use this expression to calculate the density of molecules
in the box, n(t), and hence the time, 7¢, for the gas density to drop to 1/e of its initial
value. Your answer should be good to a factor of 2 or so, depending on the crudeness of

your estimate of the flux through the hole.
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(a) Calculate the work required to bring the target from infinity to a distance
L from the target, assuming that A/L? << 1.
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A (cont'd)

(b) Now suppose that the initial density of molecules in the box is ng at time
t = 0, but that the molecules are not replaced as they leave the box. Qutline
the arguement leading to an approximate expression for the flux of
molecules leaving the box in terms of the density, n(t), of molecules in the
box at time t. You may express your answer in terms of the mean speed, V,
of a molecule. Use this expression to calculate the density of molecules in
the box, n(t), and hence the time, Te, for the gas density to drop to 1/e of its
initial value. Your answer should good to a factor of 2 or so, depending on
the crudeness of your estimate of the flux through the hole.

epitions L sz7/ o o< caidiaten

/
Ko TX 22




Code Number:
UNIVERSITY OF CALIFORNIA, SAN DIEGO
DEPARTMENT OF PHYSICS

Written Departmental Examination — Spring 1994, Part I

[8] In his 1934 article entitled “Food and the Theory of Probability™ ( United States Naval
Institute Proceedings 60, 73 (1934)), E. Condon employs a statistical analysis to explain
the following empirical rule found by U.S. Navy cooks: In a mess of over 1000 soldiers,
one should prepare approximately twelve per cent less food per soldier than in a mess of
100 soldiers (The Cook Book of the United States Navy, U.S. Government Printing Office
(1932), page 9).

(a) Suppose that an individual soldier eats on average f kilograms of food (per mess)
with a standard deviation 0. Compute the average amount of food Fy needed to feed
N soldiers. Further assuming that the soldiers’ appetites are uncorrelated, compute the

standard deviation £y of the total amount of food required.

(b) Suppose that .V is large. What is the distribution function Py (F) of the total amount

of food consumed in a mess of N soldiers? -

Condon'’s explanation of “Cook’s Law” is that one should very rarely run out of food.
Assume, then, that the high standards of the U.S. Navy call for enough food on 99.73% of
all messes, which can be accomplished by preparing a total amount of food three standard

deviations above the mean in each mess.

(c) Suppose that a recipe for 64 soldiers calls for X' kilograms of beans, and that a recipe
for 1024 soldiers calls for 16Y kilograms of beans. Using “Cook’s Law,” determine the
average f and standard deviation of the individual soldier’s bean consumption. If X =
14.4 kg and ¥ = 0.9X (so that 10 percent fewer beans per soldier is used in the 1024

person mess as compared with the 64 person mess), compute the numerical values of f

and o.



Solution

(a) The total amount of food consumed in a mess of N soldiers is Fy = Zf__l fi, where f; is the

amount of food consumed by the i** soldier. Thus,

=NN -2+ N(f*+0?
= (FN>2 -+ No?
from which we read off Fy = Nf and £y = VN o.

(b) From the central limit theorem, we have that the distribution Py(F) becomes a Gaussian in

the large N limit. Thus,

_ 1 (_(F=Nj)?
PN(F)N:OO\/QrNa"' P <_ 2No? .

(c) Assuming that the amount of food prepared in each mess is three standard deviations above
the mean, we have A(N) = N f + 3v/N 0. Let X represent the amount of food prepared in a mess
of 64 soldiers, and 16Y the amount of food prepared in a mess of 1024 soldiers. Then

64f + 240 = X
1024f + 960 = 16Y

which can be inverted to give

. 4Y - X

f= 192

U_X—Y
=05

Y =0.9X, then f = X/180 and o = 26X/1920, so with X = 14400 g one obtains f = 195g and
o = 80¢g (of beans).
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[9] Consider a particle, of mass m, moving under the influence of a potential V(7). The

particle is in a bound state (i.e., confined to a finite region of space).

(a) Show, using classical nonrelativistic mechanics, that 2T = +7 - 6V(F’) where T = %mr"2
is the kinetic energy and the bar means long-time average over the orbit. This is called

the Virial Theorem.

(b) Show that the same relation holds in quantum theory where the average is replaced

—

by the quantum mechanical expectation value.
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@A\ particle orbits a center of attraction with a potential energy V(r), in an almost
circular orbit of radius ry. Find the precession of the orbit, that is, the angular separation
Af after one trip from rp,;, back to rpin. and show that it is a multiple of 7 for the two

special cases of the Kepler problem V(r) = —k/r and the harmonic oscillator V'(r) = %er.
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[11] Consider a polymer consisting of N monomeric units shown in the figure below. Each
unit has length ¢ and width w. All of the monomeric units may freely rotate between two
allowed orientations, A or B, as indicated in the figure. Further suppose that the energy
of the two orientations is equal and that the chain is immersed in an inert solvent with

temperature T.

(a) Calculate the entropy S(L) where L is the length of the partially stretched polymer.

(b) If tension 7 is applied to both ends of the polymer. what will the equilibrium length
L be?

(c) Rederive the result obtained in part (b) (i.e., L(7,T)) using the generalized ensemble

method.
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[12] Consider the following classical model of the Benzene molecule. Treat the C - C
bond as producing a nearest neighbor pair interaction V(r) = %er where r is the C - C
spacing. Further suppose that the C atoms are restricted to lie on a ring of radius R and

that the ring remains in a plane.
(a) Find the frequencies and normal modes of oscillation for the benzene molecule.

(b) Repeat part (a) assuming that one of the carbon atoms is replaced by an infinitely

heavy impurity atom I and that the I — C interaction is the same as the C — C interaction.
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[13] A conducting sphere of radius R is immersed in a uniform magnetic field B and
rotates with frequency w about an axis through its center. Assuming that w is parallel to
B, determine the charge density in the sphere and on its surface. The net charge on the
sphere is zero. (Hint: The first three Legendre polynomials are Py(z) = 1, Pi(¢) = = and

Py(z) = %—(3.1‘2 -1).)
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C[l}] The Helium atom.

(a) Approximately determine the energy of the ground state of the Helium atom treating

the interaction between electrons as a perturbation.

(b) This result from perturbation theory needs to be improved. Find a simple, physically
motivated. trial wave function that you could use for a variational calculation. Show what

strategy you would use to perform the variational calculation.
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