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[1] In the following problem order of magnitude estimates will suffice. Model the sun
as a uniform constant density (p = 1.4 g cm~3) sphere of jonized hydrogen with radius
R ~ 7 x 1019 cm. For the purpose of estimating the internal energy of the sun, assume
a characteristic temperature of T = 4.5 X 105 K. (Note that this is not the surface
temperature of the sun.) Further assume that local thermodynamic equilibrium between
the radiation field and the matteris a good approximation. The typical photon s.cattering

cross section can be taken to be roughly the Thomson value o = 10-2% cm?.

(a) How long would it take a photon to random walk from the center to the surface of the
sun in this model?
(b) Estimate the radiant power emitted by the sun, assuming that all energy escapes

through the process of photons random walking from the center of the sun.

(c) Compare the kinetic energy density of the gas to the energy density of radiation. Find

the time taken for the sun to radiate away its internal energy.

(d) How long could the sun shine with the luminosity estimated in part (b) if it were
powered by hydrogen burning? In this process 4 protons combine to form #He through
a series of strong, weak, and electromagnetic interactions. The binding energy of 4He
relative to 4 free protons is roughly 26.7 MeV. Assume that, over its lifetime, of order ten

percent of the sun’s mass is available for hydrogen burning.

Some useful constants:

Rz_xgi.iation density constant a = 7.6 X 10~15 erg cm™3 K4

| ].é;’_l{'zvmann constant kg = 1.4 x 10716 erg X!

Tl e
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[2] Consider the motion of a star in the z direction, perpendicular to the plane of a disk-
shaped galaxy of total mass M and radius R. Assume the star is far from the edge of the
galaxy, and that it oscillates with maximum excursion zp << R relative to the galactic

plane. Calculate the period, 7, of the oscillations in the following two cases.

(a) The galaxy has negligible thickness compared with zg.

(b) The galaxy has thickness 2d and uniform mass density, and zp < d.
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[3] A particle moves in an attractive spherically symmetric potential,
k
V(r) = _;27

with k a constant.

What is the total cross section for capture of a particle incident from infinitely far away

with initial velocity vg? Explain clearly how you obtain your result. <

Hini: What is the maximum impact parameter which will result in capture?




Code Number:
UNIVERSITY OF CALIFORNIA, SAN DIEGO
DEPARTMENT OF PHYSICS

Written Departmental Examination — Spring 1995, Part I

~ [4] Two problems in electrostatics:

(a) Consider the arrangement shown below of two line charges, each of length 2a. Their re-

spective linear charge densities (charge per unit length) are A and —J, as shown. Calculate

the electrostatic dipole moment p = (pz, py, pz)-

(b) As shown below, a conducting sphere, A, is placed at the center of two thin, concentric,
conducting spherical shells, B and C, and a conducting wire conneéts B and C:'Initial]y
all conductors are uncharged, and then A is charged to +Q by an external agent. Answer

the following questions, and provide clear explanations for all your answers.

(1) What is the electric field in the region between A and B?
(i) What is the electric field in the region between B and C?
(iii) What is the electric field outside C?

(iv) What are the charge distributions on B and C?

(v) How much work is done charging the sphere A to +Q?

(vi) What is the capacitance of the system?

a4 Cea )
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[5] Consider a particle of mass m moving in the infinite square well potential

7 .
V(c) = |4 ?fOSzSa,
oo ifz<Qorz>a.

(a) Derive the energy eigenvalues En and eigenfunctions ¥n(z).

(b) A small perturbation V,en(z) = aUé(z — %a) is added, where §(z) is the Dirac delta
function and U is a constant with dimensions of energy. Compute the energy shifts of all

the levels F,; to first order in U.

(c) Using second order perturbation theory, find the ground state energy to second order

in U. You may find the following mathematical identity useful:
2
—iG+1)

J=1
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[6] The Einstein model of the lattice vibrations of a solid consisting of N atoms repre-
sents the solid by 3N identical one-dimensional quantum harmonic oscillators, each with

frequency wg. Answer the following questions related to this model:

(a) Find the mean energy of the system as a function of the temperature, T', of the solid.

(b) Find the heat capacity of the system, and evaluate it in the limit k3T >> fiwg. Discuss

this result in terms of the equipartition theorem.
(¢) Find the general expression relating the pressure of a system to its Helmholtz {ree
energy.

(d) To model anharmonic effects in the solid, one assumes that the frequency wq is a func-

tion of the volume, V. Find the pressure in the Einstein solid as a function of (0wq/0V ).
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7] The {orce of air resistance on a falling body is very nearly proportional to the square
of its velocity. Thus, if we define the height to be —y (so that y increases as the particle

falls), the differential equation for the motion is given by
d% dy\?
— g — —_—
di? dt

where g is the acceleration due to gravity.

(a) Rescale the position and time variables (y,t) to form dimensionless variables £ o y

and 7 « ¢. Derive a differential equation for the rescaled height, —€(7).

(b) Write down and solve the (first order) differential equation for the dimensionless ve-

locity, u(7) = d¢/d7. You may assume that at t = 0 the body is at rest.

(c) Expand your solution u(7) in a power series in 7, and show that the first two nonvan-

ishing terms can also be obtained by iterating the differential equation for u(7).

(d) Integrate again to find £(7) and y(t). Find the limiting expressions for small and large

t and comment on their behavior.
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[8) In an ion storage ring, NV ions of charge ¢ and mass m are confined to a circle of radius
R. Their motion is thus purely one-dimensional, as they are constrained to move along the
circle. Their equilibrium separation is then a = 2aR/N. Suppose that the number of ions
N is very large, in which case a < R. The system can then be approximated as an infinite

linear chain of ions with equilibrium separation a (i.e., you may neglect the curvature of

the ring).

(a) Let the position of the n'" jon be Xn = na + zn, where zn is the deviation {from

equilibrium. Expand the potential energy to second order in the deviations zn.

(b) Find an expression for the frequency of oscillation, w(k), of the normal modes of the

chain as a function of their wave number k.
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[9] An electron is at rest a distance rg from a nucleus of charge Q. It is then released and
falls toward the nucleus. In answering the following, assume the electron velocity, v, is

such that v < ¢, that the motion is confined to one dimension, and that the motion can
be described glassicaﬂyr.
(a) Calculate the radiated power as a function of the electron-nucleus separation, r.

(b) Calculate the total energy radiated as a function of r. (You may. leave your apswer in

integral form.)




N ‘Code Number:
UNIVERSITY OF CALIFORNIA, SAN DIEGO
DEPARTMENT OF PHYSICS

Written Departmental Examination — Spring 1993, Part II

110] The bosonic low-energy excitations of a two-dimensional system of dimensions L x L

are described by the wave equation

32u 4
Pﬁ'ﬁ-cv u=0

where V¢ = (V2)2. (The scalar u(r,t) might represent height fluctuations normal to the
two-dimensional plane.)

(a) Solve for the dispersion relation w(k).

(b) Compute the density of states g(w).

(c¢) Compute, to within a numerical constant, the low-temperature specific heat C(T).
(You may assume that ks T is much greater than the spacing between neighboring quantized

energy levels.)
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[1{] The nuclear charge number Z of a (Z — 1)-times ionized atom changes suddenly to

Z + 1 when the nucleus of the atom undergoes beta decay.

(a) Calculate the probability for the electron to make a transition to the 2s-state, assuming

that it was in the ground state before the decay. Evaluate the transition probability

numerically for Z = 14.

(b) What is the transition probability to the 2p-state?

The Bohr radius is ag = h2/me? = 0.529 x 10~8¢cm. You may find the following useful:

Radial wavefunctions for V(r) = —Ze?/r:

ag
z \3? Zr _
3/2
Ra(r) = _1.?: <.2_f_> <_Z.1> =2Zr/2a0
0 ag
Some spherical harmonics:
1
Yoo =4/ 1=
Yi0 = iﬂ_— cos @
Yi1=- % sin 6 ¢*?

An integral: -
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@j&a) Consider a spin-%, particle with magnetic moment y = 70 in a uniform magnetic
field B which points in the direction (8,¢) relative to a Cartesian coordinate system
(z,y,2). Here, o = oz% + oy¥ + 0: %, where {oa} are the Pauli matrices. Take the
spin quantization axis to be the z-axis (§ = 0). Find the energy eigenstates and energy

eigenvalues in this basis.

(b) For a particle in each of these two eigenstates, determine the probability for its spin
to be measured along the X-axis.

(c) At timet =0, a spin-% particle (as in part (a)) has its spin oriented along the X-axis.
A magnetic field B = B3 is then applied for a time t, after which the spin points along

the y-axis. Determine t.

(d) Four spin-% particles interact pairwise according to the Hamiltonian

H=J)Y 5;-5;,
1<j

where J is a constant and ¢ and j label the four particles. The sum is over all possible

pairs. Find all the energy eigenvalues.
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[13] Evaluate
oo
I(N) = /d:c (cosh :z:)"N

-0

-3/2,

for large N, to order N
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PART I  PROB. 5

Solution 5§ S
(a) The wavefunctions must be linear combinations of exponentials
¢(z) = Aeikz +Be—ikz
subject to the boundary conditions
$(0)=0
P(a)=0. .

The first of these boundary conditions gives B = .—A, and the second gives sinka = 0, requiring

k, = n7/a with n any integer. The linearly independent normalized solutions are thus

Pa(z) = \/g sin (g‘z)
n?x2h?

En=Vot oo

with n € {1,2,...}. -
(b) The first order energy shift of the n'* level is given by
AES) = (nlevnlln»

= 2U sin®(}n~)
- { 2U if n odd;
0 if n even.

Note that we have used the result

k1Yl 1) = [ 4 4i(e) Va2 (o)
= 2U sin(}kn) sin(}!7) .

(c) The second order energy shifts are given by

Voeu | R) 2
AE,(:)"—' I(Tll pert
2 " E D

(k#n)
8ma?U? bk 0dd
= tneta 20 T
n2h —~ n?-k
(etn)

So, for the ground state, which has n = 1, we have (writing k = 2j + 1),

e mm@rtE 1
L AER = a
MRS TR LG
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Solution 7 e e

(a) Note that the units of g are [g] = L/T2 and the units of a are [a] = 1/L. So there is a length
scale a~?! and a time scale (ga)~1/2, and defining the dimensionless variables ¢ and 7 through

y=¢/a t=7//9a,

See®

(b) The dimensionless velocity u(7r) = d¢/dr satisfies

the equation of motion becomes

du 2
E;-l—-u

and hence

which, together with the boundary condition u(0) = 0 gives

14u eT -1

_u=$u(-r)=ezr+1=tanh7'.

(c) Taylor expanding,
u(7) = tanhr

=T %‘7’3 + 0(1‘5) .
This expansion can be obtained by iterating the differential equation for u(r). At the zeroth level

of iteration, we have u(®)(7) = 0, and the first iteration gives

u(r) = /0 dr' (1 [ = 7.

The second iteration then gives

u® (1) = / dr' (1 - u.(’)(-r’)]z) =7~ -‘r

Proceedmg further, we could generate the Taylor series expansxon for u('r) = tanh'r

e e

(d) Integratmg agam, R —

: tanh'f=>£(f)=€(0) +Incosh



since dIncosh T = tanh rdr. In terms of y and ¢, we have
y(t) = y(0) + a~ ! Incosh(t,/ay) .
For small ¢, we use
Incoshr =In(1+ 372 +..))
= %‘rz +...
to obtain
y(t) = y(0) + 39¢* + O(t")

which simply says that the particle falls freely for early times, when its velocity is small enough

that the friction term may be ignored. At late times, we have coshT — %e’ and hence

y(t) = y(0) — a7 In2 + ty/g/a + O(e™*V).

This demonstrates that at late times, the particle achieves a terminal velocity -
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Solution 8
(a) Let X, = na + z, be the position of the n* ion, where z, = 0 in equilibrium. The potential

energy is

V‘=le XI

Now
TR =T 2

» :
1 _ n—n’)u ( (TnTs_) ifn> nl;
Y v - -1
IXn—XnII "_na (1+&l——-ﬂfﬁ) ifnl> n;
_ 1 1 ::,,—:c,,:_l_ Ty — Tt 2+
T ln-n'la (n=n"a  [(n-n')a U
The term linear in the displacements z,, vanishes, since
4 et e 3 B
- z —_—
—a')ln - n’[a.2 - n (n—-n')?

' ]
nEn (nfn)

Thus, the potential energy can be written

V= %EXI:KI (In - Zn.H)z

(b) The equations of motion can be diagonalized by Fourier transform:
Ty = -.\/l——ﬁ Z ;’c‘(k) e'ikun
k
1 ;
E(k) - Zzﬂ e—xkan
VN %
where —(7/2a) < k < (7/2a). Then
V= 5 Z Z Keikone=ik'an [ — e—ik'al _ gikal | eikale—s’k’al] (k) 5(~F")
nl ki’

=32 R(k)2(k)3(-F)
k

with

R(k) =43 Kisin’(3kal)

The kinetic energy is.

SP43



and so we can read off w(k) = {/K(k)/m. The general expression is

8¢ < sin?(}kal) .

ma3 B
=1

wz(k) =

Note to aficionados: One finds that w(k) < ky/—In(ka) as k — 0, i.e. there are logarithmic
corrections to the usual acoustic (w « k) dispersion due to the long-range nature of the Coulomb

potential.

-
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PART 11  PROB. 10

Solution 10
(a) The wave equation is
8%’

A re a+CViVu=0

so substituting u(r,t) = ug e’ 7=¥t) gives —pw? + Ck* =0, i.e.

w= 1/ ¢ K?
P -
where k = |k].

(b) The density of states is given by

g(w)dw = -L—21rkdk = ——-1/ dw

which gives
L* [p i
g(w) 47r 5 ’
a constant.

(c) The mean energy is

= [tos@)tw {n() + 3}

where n(w) = (e"/*sT _ 1)~1 i5 the Bose occupancy factor. Note that E(T) is infinite! This is
because of the zero point energy. (If we had imposed an ultraviolet (short wavelength) cutoff on the
density of states, as in the Debye model, this wouldn’t have happened.) However, the infinite zero

point energy is temperature independent and doesn’t affect the specific heat. The T-dependent

part to E(T) is
L* [p 7 1
E(T)- Fo= 1/ /dunw——ewm_l
0

_ L2 [p (ksT)?
E\/g A
o
7r Lz (kg )

where the mtegral nges the numencal constant 7:2/ 6. The spec1ﬁc heat is then lmear in T: ‘

aE ~7r JI2 sz
Biih 54\/; o
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PART II1
Solution 13
We have
coshz=1+1z2 + Lz +...
Incosh(z) = 1z% - Sz + ...

sO (COSh z)—N = e—Nlncoshz

= e—%N=’+%N=‘+...

1
-SNz? 4 -
=e 277 .{1+1%N:z: +}

where we have used
In(14+2)=z-322+12+...

- Thus, .

7 1
I(N)= /d:ce*iN":{1+%N:c4+...}

-0
We have that the integral
J(A) = /d:c e = A2
-0
and so we can also evaluate
k
/dz gk emde o ('a%) J(3)
-0
This gives
/d:z:e'2h: =2z N"1/2
—00
o0
/dz 243N 2 3/ (1)
-00
and finally

PROB. 13
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